Publications by authors named "Qionglin Zhang"

Regulated intramembrane proteolysis (RIP) is a fundamentally conserved mechanism involving sequential cleavage by a membrane-bound Site-1 protease (S1P) and a transmembrane Site-2 protease (S2P). In the opportunistic pathogen Pseudomonas aeruginosa, the alternate sigma factor σ activates alginate production and in turn is regulated by the MucABCD system. The anti-sigma factor MucA, which inhibits σ, is sequentially cleaved via RIP by AlgW (S1P) and MucP (S2P) respectively.

View Article and Find Full Text PDF

IlvA1, a pyridoxal phosphate-dependent (PLP) enzyme, catalyzes the deamination of l-threonine and l-serine to yield 2-ketobutyric acid or pyruvate. To gain insights into the function of IlvA1, we determined its crystal structure from Pseudomonas aeruginosa to 2.3 Å.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA).

View Article and Find Full Text PDF

Chronic pulmonary infections in those living with cystic fibrosis or chronic obstructive pulmonary disease are promoted by production of alginate by the opportunistic pathogen Pseudomonas aeruginosa. Alginate biosynthesis enzymes in P. aeruginosa are regulated by the extracytoplasmic function alternative sigma factor σ either by mutation in mucA or in response to envelope stress.

View Article and Find Full Text PDF

Fuculose phosphate aldolases play an important role in glycolysis and gluconeogenesis pathways. L-fuculose 1-phosphate aldolase catalyzes the reversible cleavage of L-fuculose 1-phosphate to DHAP and L-lactaldehyde. Class II aldolases found in bacteria are linked to pathogenesis of human pathogens, and have potential applications in the biosynthesis of carbohydrates and other chiral compounds.

View Article and Find Full Text PDF

Klebsiella pneumoniae is an opportunistic pathogen that mostly affects those with weakened immune systems. Urease is a vital enzyme that can hydrolyze urea to ammonia and carbon dioxide as a source of nitrogen for growth. Urease is also a K.

View Article and Find Full Text PDF

Regulated degradation of mature, cytoplasmic mRNA is a key step in eukaryotic gene regulation. This process is typically initiated by the recruitment of deadenylase enzymes by cis-acting elements in the 3' untranslated region resulting in the shortening and removal of the 3' poly(A) tail of the target mRNA. The Ccr4-Not complex, a major eukaryotic deadenylase, contains two exoribonuclease subunits with selectivity toward poly(A): Caf1 and Ccr4.

View Article and Find Full Text PDF

Oligoribonuclease (Orn), a member of the DEDDh superfamily, can hydrolyse 2-5 nt nanoRNAs to mononucleotides. It is involved in maintaining the intracellular levels of RNA, c-di-GMP signalling and transcription initiation in many bacterial species. Here, the crystal structure of Orn from Vibrio cholerae O1 El Tor (VcOrn) is reported at a resolution of 1.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa can utilize polyamines (including putrescine, cadaverine, 4-aminobutyrate, spermidine, and spermine) as its sole source of carbon and nitrogen. Spermidine dehydrogenase (SpdH) is a component of one of the two polyamine utilization pathways identified in P. aeruginosa, but little is known about its structure and function.

View Article and Find Full Text PDF

Polyamines are important regulators in all living organisms and are implicated in essential biological processes including cell growth, differentiation and apoptosis. Pseudomonas aeruginosa possesses an spuABCDEFGHI gene cluster that is involved in the metabolism and uptake of two polyamines: spermidine and putrescine. In the proposed γ-glutamylation-putrescine metabolism pathway, SpuA hydrolyzes γ-glutamyl-γ-aminobutyrate (γ-Glu-GABA) to glutamate and γ-aminobutyric acid (GABA).

View Article and Find Full Text PDF

The Kemp elimination reaction, involving the ring-opening of benzoxazole and its derivatives under the action of natural enzymes or chemical catalysts, has been of interest to researchers since its discovery. Because this reaction does not exist in all currently known metabolic pathways, the computational design of Kemp eliminases has provided valuable insights into principles of enzymatic catalysis. However, it was discovered that the naturally occurring promiscuous enzymes ydbC, xapA and ketosteroid isomerase also can catalyze Kemp elimination.

View Article and Find Full Text PDF

2-aminoethylphosphonate:pyruvate aminotransferase (AEPT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that mediates the first step in the AEP degradation pathway. It catalyzes the transamination of 2-aminoethylphosphonate (AEP) with pyruvate to phosphonoacetaldehyde and l-alanine respectively. Although the enzyme is widely present in microorganisms, there are few reports on the structure and function of AEPT to date.

View Article and Find Full Text PDF

The tryptophan biosynthesis pathway, which does not exist in mammals, is highly conserved in Mycobacterium. Anthranilate synthase (AS) catalyzes the initial reactions in the tryptophan biosynthesis pathway in many microorganisms, catalyzing the conversion of glutamine and chorismate to form pyruvate and anthranilate. Here, the crystal structure of anthranilate synthase component I (AS I) from Mycolicibacterium smegmatis (MsTrpE) has been determined to 1.

View Article and Find Full Text PDF

Pseudomonas aeruginosa can metabolize acyclic monoterpenoids (such as citronellol and geraniol) as the only carbon and energy sources. A total of seven proteins (AtuA, AtuB, AtuCF, AtuD, AtuE, AtuG, AtuH) have been identified in Pseudomonas aeruginosa as participating in the acyclic terpene utilization pathway. AtuB is a dehydrogenase enzyme responsible for citronellol and geraniol catabolism in the acyclic terpene utilization (Atu) pathway, although its structure and function have not been characterized to date.

View Article and Find Full Text PDF

Alginate production in Pseudomonas aeruginosa is regulated by the alternate σ factor AlgU, which in turn is regulated by the MucABCD system. The anti-σ factor MucA binds AlgU in the cytoplasm and prevents AlgU from binding to the RNA polymerase for transcription. MucB binds MucA in the periplasm and inhibits proteolysis of MucA and subsequent release of AlgU.

View Article and Find Full Text PDF
Article Synopsis
  • Isopenicillin N synthase (IPNS) is crucial for penicillin production, converting a specific tripeptide into isopenicillin N, the precursor for β-lactam antibiotics.
  • The pa4191 gene in Pseudomonas aeruginosa has been identified as part of the IPNS family, and researchers have determined its crystal structure, revealing a jelly roll fold and confirming its membership in this family.
  • The PaIPNS protein binds iron but lacks the capability to bind the tripeptide ACV due to a restricted binding pocket, differentiating it from other known IPNS structures.
View Article and Find Full Text PDF

Acetolactate decarboxylase (ALDC) is a well-characterized anabolic enzyme involved with 3-hydroxy butanone (acetoin), an important physiological metabolite excreted by microbes. Although the enzyme is widely present in microorganisms, few atomic structures and functions of ALDC have been reported to date. Here we report the crystal structure of ALDC from Klebsiella pneumoniae KP (KpALDC).

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial cyclic-di-GMP (c-di-GMP) is essential for various functions in bacteria, impacting processes like movement, infection, and biofilm development.
  • The YfiBNR signaling system in Pseudomonas aeruginosa adjusts c-di-GMP levels based on external signals.
  • This study examines mutant forms of the YfiB protein, revealing how specific mutations affect its ability to form complexes and enhance biofilm formation through structural changes when interacting with YfiR.
View Article and Find Full Text PDF

DNA damage is usually lethal to all organisms. Homologous recombination plays an important role in the DNA damage-repair process in prokaryotic organisms. Two pathways are responsible for homologous recombination in Pseudomonas aeruginosa: the RecBCD pathway and the RecFOR pathway.

View Article and Find Full Text PDF

Unlabelled: To investigate the function of the pa4079 gene from the opportunistic pathogen Pseudomonas aeruginosa PAO1, we determined its crystal structure and confirmed it to be a NAD(P)-dependent short-chain dehydrogenase/reductase. Structural similarity and activity for a broad range of substrates indicate that PA4079 functions as a carbonyl reductase. Comparison of apo- and holo-PA4079 shows that NADP stabilizes the active site specificity loop, and small molecule binding induces rotation of the Tyr183 side chain by approximately 90° out of the active site.

View Article and Find Full Text PDF

Human CNOT6L/CCR4, a member of the endonuclease-exonuclease-phosphatase (EEP) family enzymes, is one of the two deadenylase enzymes in the conserved CCR4-NOT complex. Here, we report inhibitor-bound crystal structures of the human CNOT6L nuclease domain in complex with the nucleotide CMP and the aminoglycoside neomycin. Deadenylase activity assays show that nucleotides are effective inhibitors of both CNOT6L and CNOT7, with AMP more effective than other nucleotides, and that neomycin is a weak deadenylase inhibitor.

View Article and Find Full Text PDF

YfiBNR is a tripartite signalling system in Pseudomonas aeruginosa that modulates intracellular c-di-GMP levels in response to signals received in the periplasm. YfiB is an outer membrane lipoprotein and presumed sensor protein that sequesters the repressor protein YfiR. To provide insights into YfiBNR function, we have determined three-dimensional crystal structures of YfiB and YfiR from P.

View Article and Find Full Text PDF

The CCR4-NOT complex is a highly conserved, multifunctional machinery with a general role in controlling mRNA metabolism. It has been implicated in a number of different aspects of mRNA and protein expression, including mRNA degradation, transcription initiation and elongation, ubiquitination, and protein modification. The core CCR4-NOT complex is evolutionarily conserved and consists of at least three NOT proteins and two catalytic subunits.

View Article and Find Full Text PDF

Alkaline exonuclease and single-strand DNA (ssDNA) annealing proteins (SSAPs) are key components of DNA recombination and repair systems within many prokaryotes, bacteriophages and virus-like genetic elements. The recently sequenced β-proteobacterium Laribacter hongkongensis (strain HLHK9) encodes putative homologs of alkaline exonuclease (LHK-Exo) and SSAP (LHK-Bet) proteins on its 3.17 Mb genome.

View Article and Find Full Text PDF