Purpose: To explore the application value of a multimodal deep learning radiomics (MDLR) model in predicting the risk status of postoperative progression in solid stage I non-small cell lung cancer (NSCLC).
Materials And Methods: A total of 459 patients with histologically confirmed solid stage I NSCLC who underwent surgical resection in our institution from January 2014 to September 2019 were reviewed retrospectively. At another medical center, 104 patients were reviewed as an external validation cohort according to the same criteria.
Objectives: To determine whether a CT-based machine learning (ML) can differentiate benign renal tumors from renal cell carcinomas (RCCs) and improve radiologists' diagnostic performance, and evaluate the impact of variable CT imaging phases, slices, tumor sizes, and region of interest (ROI) segmentation strategies.
Methods: Patients with pathologically proven RCCs and benign renal tumors from our institution between 2008 and 2020 were included as the training dataset for ML model development and internal validation (including 418 RCCs and 78 benign tumors), and patients from two independent institutions and a public database (TCIA) were included as the external dataset for individual testing (including 262 RCCs and 47 benign tumors). Features were extracted from three-phase CT images.
Objective: This study aims to differentiate preoperative Borrmann type IV gastric cancer (GC) from primary gastric lymphoma (PGL) by transfer learning radiomics nomogram (TLRN) with whole slide images of GC as source domain data.
Materials And Methods: This study retrospectively enrolled 438 patients with histopathologic diagnoses of Borrmann type IV GC and PGL. They received CT examinations from three hospitals.