Publications by authors named "Qionger He"

Article Synopsis
  • * Inhibiting the NKCC1 chloride co-transporter helps restore chloride balance in these neurons, improving the development of thalamocortical excitatory synapses.
  • * This intervention also leads to significant changes in the protein profile of the barrel cortex and corrects the enlarged whisker-evoked cortical maps in adult Fmr1 knockout mice, enhancing somatosensory functions.
View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and a leading cause of autism. FXS is caused by a trinucleotide expansion in the gene on the X chromosome. The neuroanatomical hallmark of FXS is an overabundance of immature dendritic spines, a factor thought to underlie synaptic dysfunction and impaired cognition.

View Article and Find Full Text PDF

The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses.

View Article and Find Full Text PDF

Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABA(A) receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents.

View Article and Find Full Text PDF

Delays in synaptic and neuronal development in the cortex are key hallmarks of fragile X syndrome, a prevalent neurodevelopmental disorder that causes intellectual disability and sensory deficits and is the most common known cause of autism. Previous studies have demonstrated that the normal progression of plasticity and synaptic refinement during the critical period is altered in the cortex of fragile X mice. Although the disruptions in excitatory synapses are well documented in fragile X, there is less known about inhibitory neurotransmission during the critical period.

View Article and Find Full Text PDF

Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice.

View Article and Find Full Text PDF

Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-(D)-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells.

View Article and Find Full Text PDF

Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF)-to-Purkinje cell synapses can also evoke increases in intrinsic excitability. This form of intrinsic plasticity shares with LTP a requirement for the activation of protein phosphatases 1, 2A, and 2B for induction.

View Article and Find Full Text PDF

As a major inhibitory neurotransmitter, GABA plays a vital role in the brain by controlling the extent of neuronal excitation. This widespread role is reflected by the ubiquitous distribution of GABA(A) receptors throughout the central nervous system. To regulate the level of neuronal inhibition requires some endogenous control over the release of GABA and/or its postsynaptic response.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpkv4lnu15a3i5u8njf48q36e9n0ltj7a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once