Background: Osteoarthritis (OA), caused by the destruction of joint cartilage, is the most prevalent form of arthritis, causing pain and stiffness in joints among millions of patients worldwide. Increasing evidence suggests that non-coding RNAs, including circular RNAs, play important roles in the pathogenesis of OA, but the precise signaling pathway is still unclear.
Methods: To study OA, we established a mouse model by the destabilized medial meniscus (DMM) surgery and used IL-1β stimulated human cell line C28/I2 as an in vitro study.
Objective: To comprehensively and accurately analyze the out-performance of low-dose chest CT (LDCT) vs. standard-dose CT (SDCT).
Methods: The image quality, size measurements and radiation exposure for LDCT and SDCT protocols were evaluated.
Osteoarthritis (OA) is an ageing-related disease characterized by articular cartilage degradation and joint inflammation. circRNA has been known to involve in the regulation of multiple inflammatory diseases including OA. However, the mechanism underlying how circRNA regulates OA remains to be elucidated.
View Article and Find Full Text PDFObjective(s): Protein kinase C (PKCα) is involved in modulating articular chondrocytes apoptosis induced by nitric oxide (NO). Hyaluronic acid (HA) inhibits nitric oxide-induced apoptosis of articular chondrocytes by protecting PKCα, but the mechanism remains unclear. The present study was performed to investigate the effects and mechanisms of PKCα regulate protective effect of hyaluronic acid.
View Article and Find Full Text PDFObjective: Nitric oxide is an important mediator in Osteoarthritis (OA), and causes apoptosis and dedifferentiation in articular chondrocytes. Protein kinase Calpha is involved in modulating apoptosis and dedifferentiation of articular chondrocytes induced by nitric oxide. Hyaluronic acid is widely used in the treatment of osteoarthritis and exerts significant chondroprotective effects.
View Article and Find Full Text PDFPurpose: The purpose of this study was to study the protective effect and influence of sodium hyaluronate (Na-HA) on mRNA expression of peroxisome proliferators-activated receptor gamma (PPAR-gamma) in cartilage of rabbit osteoarthritis (OA) model.
Materials And Methods: Forty eight white rabbits were randomly divided into A, B, and C groups. Group A was normal control group, B and C groups underwent unilateral anterior cruciate ligament transection (ACLT).
Background: Little is known about the expression of vascular endothelial growth factor (VEGF) and its receptor-2 (VEGFR-2) mRNA in the cartilage of a rabbit osteoarthritis model or the influence of intraarticular injection of hyaluronan (HA) on the expression of VEGF and VEGFR-2 in cartilage during the process of osteoarthritis (OA). The therapeutic mechanism of HA is not completely understood, and we hypothesize that the mechanism is through the effects of VEGF and VEGFR2. In this study, we determined the VEGF and VEGFR-2 mRNA expression in a rabbit OA model and assessed the therapeutic mechanism of HA against OA.
View Article and Find Full Text PDFBackground: The decrease of surfactant protein (SP) secreted by the alveolar type II cell is one of the important causes of limiting air of pulmonary emphysema. However, the SP-A gene and protein changes in this disease are rarely studied. This study was undertaken to investigate alterations in SP-A gene activity and protein, and to explore their roles in the pathogenesis of emphysematous changes.
View Article and Find Full Text PDF