Publications by authors named "Qiong A Liu"

Elevated CO2 concentrations have been observed to accelerate flowering time in Arabidopsis through the action of a highly conserved regulatory network controlled by miR156 and miR172. However, the network's robustness to the impact of increasing CO2 concentrations on flowering time remains poorly understood. In this study, we investigate this question by conducting a comprehensive analysis of the global landscape of network dynamics, including quantifying the probabilities associated with juvenile and flowering states and assessing the speed of the transition between them.

View Article and Find Full Text PDF

Copy number variations (CNVs) have been shown to cause numerous diseases, however, their roles in human lifespan remain elusive. In this study, we investigate the association of CNVs with longevity by comparing the Han Chinese genomes of long-lived individuals from 90 to 117 years of age and the middle-aged from 30 to 65. Our data demonstrate that the numbers of CNVs, especially deletions, increase significantly in a direct correlation with longevity.

View Article and Find Full Text PDF

Elevated levels of CO2 and temperature can both affect plant growth and development, but the signalling pathways regulating these processes are still obscure. MicroRNAs function to silence gene expression, and environmental stresses can alter their expressions. Here we identify, using the small RNA-sequencing method, microRNAs that change significantly in expression by either doubling the atmospheric CO2 concentration or by increasing temperature 3-6 °C.

View Article and Find Full Text PDF

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding.

View Article and Find Full Text PDF

Bcl-w belongs to the prosurvival group of the Bcl-2 family, while the glutamate receptor delta2 (Grid2) is an excitatory receptor that is specifically expressed in Purkinje cells, and required for Purkinje cell synapse formation. A recently published result as well as our own findings have shown that Bcl-w can physically interact with an autophagy protein, Beclin1, which in turn has been shown previously to form a protein complex with the intracellular domain of Grid2 and an adaptor protein, nPIST. This suggests that Bcl-w and Grid2 might interact genetically to regulate mitochondria, autophagy, and neuronal function.

View Article and Find Full Text PDF