Publications by authors named "Qinzhen Shi"

Article Synopsis
  • Classic ultrasound bone imaging requires prior knowledge of sound speed, limiting resolution and complicating the process.
  • This article introduces a new method called frequency-domain full-waveform inversion (FDFWI) that uses phased array tomography for more accurate imaging of cortical bone.
  • The method was tested through simulations and experimental studies, achieving mean relative errors of 3.18%, 8.71%, and 9.36%, demonstrating its effectiveness without needing prior sound speed information.
View Article and Find Full Text PDF

Elastography is a promising diagnostic tool that measures the hardness of tissues, and it has been used in clinics for detecting lesion progress, such as benign and malignant tumors. However, due to the high cost of examination and limited availability of elastic ultrasound devices, elastography is not widely used in primary medical facilities in rural areas. To address this issue, a deep learning approach called the multiscale elastic image synthesis network (MEIS-Net) was proposed, which utilized the multiscale learning to synthesize elastic images from ultrasound data instead of traditional ultrasound elastography in virtue of elastic deformation.

View Article and Find Full Text PDF

High mobility electron gases confined at material interfaces have been a venue for major discoveries in condensed matter physics. Ultra-high vacuum (UHV) technologies played a key role in creating such high-quality interfaces. The advent of two-dimensional (2D) materials brought new opportunities to explore exotic physics in flat lands.

View Article and Find Full Text PDF

Due to the significant acoustic impedance contrast at cortical boundaries, highly inside attenuation, and the unknown sound velocity distribution, accurate ultrasound cortical bone imaging remains a challenge, especially for the traditional pulse-echo modalities using unique sound velocity. Moreover, the large amounts of data recorded by multielement probe results in a relatively time-consuming reconstruction process. To overcome these limitations, this article proposed an index-rotated fast ultrasound imaging method based on predicted velocity model (IR-FUI-VP) for cortical cross section ultrasound tomography (UST) imaging, utilizing ray-tracing synthetic aperture (RTSA).

View Article and Find Full Text PDF

Due to its sensitivity to geometrical and mechanical properties of waveguides, ultrasonic guided waves (UGWs) propagating in cortical bones play an important role in the early diagnosis of osteoporosis. However, as impacts of overlaid soft tissues are complex, it remains challenging to retrieve bone properties accurately. Meta-learning, i.

View Article and Find Full Text PDF

Due to its multimode and dispersive nature, ultrasonic guided waves (UGWs) usually consist of overlapped wave packets, which challenge accurate bone characterization. To overcome this obstacle, a classic idea is to separate individual modes and to extract the corresponding dispersion curves. Reported single-channel mode separation algorithms mainly focused on offering a time-frequency representation (TFR) where the energy distributions of individual modes were apart from each other.

View Article and Find Full Text PDF

There is a significant acoustic impedance contrast between the cortical bone and the surrounding soft tissue, resulting in difficulty for ultrasound penetration into bone tissue with high frequency. It is challenging for the conventional pulse-echo modalities to give accurate cortical bone images using uniform sound velocity model. To overcome these limitations, an ultrasound imaging method called full-matrix Fourier-domain synthetic aperture based on velocity inversion (FM-FDSA-VI) was developed to provide accurate cortical bone images.

View Article and Find Full Text PDF