Publications by authors named "Qinxin Luo"

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on controlling the facets and phases of metal nanomaterials to enhance their properties and applications, specifically using unconventional structures, like hexagonal close-packed (2H) Pd nanoparticles as seeds for growth.
  • The researchers developed a method to selectively grow NiRh on 2H-Pd, resulting in nanoplates and nanorods that display different exposed facets—specifically, the nanorods expose more (100) and (101) facets than the nanoplates.
  • The 2H-Pd@2H-NiRh nanorods demonstrate superior catalytic activity for hydrogen oxidation reactions compared to traditional metal phases, due to their enhanced electron transfer and optimized binding
View Article and Find Full Text PDF

As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions.

View Article and Find Full Text PDF

Intermetallic nanomaterials have shown promising potential as high-performance catalysts in various catalytic reactions due to their unconventional crystal phases with ordered atomic arrangements. However, controlled synthesis of intermetallic nanomaterials with tunable crystal phases and unique hollow morphologies remains a challenge. Here, a seeded method is developed to synthesize hollow PdSn intermetallic nanoparticles (NPs) with two different intermetallic phases, that is, orthorhombic Pd Sn and monoclinic Pd Sn .

View Article and Find Full Text PDF

Controlled construction of bimetallic nanostructures with a well-defined heterophase is of great significance for developing highly efficient nanocatalysts and investigating the structure-dependent catalytic performance. Here, a wet-chemical synthesis method is used to prepare Au@Pd core-shell nanorods with a unique -2H- heterophase (: face-centered cubic; 2H: hexagonal close-packed with a stacking sequence of "AB"). The obtained -2H- heterophase Au@Pd core-shell nanorods exhibit superior electrocatalytic ethanol oxidation performance with a mass activity as high as 6.

View Article and Find Full Text PDF

With the development of phase engineering of nanomaterials (PEN), construction of noble-metal heterostructures with unconventional crystal phases, including heterophases, has been proposed as an attractive approach toward the rational design of highly efficient catalysts. However, it still remains challenging to realize the controlled preparation of such unconventional-phase noble-metal heterostructures and explore their crystal-phase-dependent applications. Here, various Pd@Ir core-shell nanostructures are synthesized with unconventional fcc-2H-fcc heterophase (2H: hexagonal close-packed; fcc: face-centered cubic) through a wet-chemical seeded method.

View Article and Find Full Text PDF

Crystal phase engineering of noble-metal-based alloy nanomaterials paves a new way to the rational synthesis of high-performance catalysts for various applications. However, the controlled preparation of noble-metal-based alloy nanomaterials with unconventional crystal phases still remains a great challenge due to their thermodynamically unstable nature. Herein, we develop a robust and general seeded method to synthesize PdCu alloy nanomaterials with unconventional hexagonal close-packed (, 2H type) phase and also tunable Cu contents.

View Article and Find Full Text PDF