Publications by authors named "Qinxi Qiu"

With the development of ultrafast optics, all-optical control of terahertz wave modulation based on semiconductors has become an important technology of terahertz wave regulation. In this article, an ultrawideband terahertz linear polarization converter consisting of a double-layered metasurface is first proposed. The polarization conversion ratio of the device is ∼ 100% at 0.

View Article and Find Full Text PDF

In this paper, we design a metasurface terahertz perfect absorber with multi-frequency selectivity and good incident angle compatibility using a double-squared open ring structure. Simulations reveal five selective absorption peaks located at 0-1.2 THz with absorption 94.

View Article and Find Full Text PDF

Silicon (Si) is the most important semiconductor material broadly used in both electronics and optoelectronics. However, the performance of Si-based room temperature detectors is far below the requirements for direct detection in the terahertz (THz) band, a very promising electromagnetic band for the next-generation technology. Here, we report a high sensitivity of room temperature THz photodetector utilizing the electromagnetic induced well mechanism with an SOI-based structure for easy integration.

View Article and Find Full Text PDF

Photoelectric detection is developing rapidly from ultraviolet to infrared band. However, terahertz (THz) photodetection approaches is constrained by the bandgap, dark current, and absorption ability. In this work, room-temperature photoelectric detection is extended to the THz range implemented in a planar metal-NbSe-metal structure based on an electromagnetic induced well (EIW) theory, exhibiting an excellent broadband responsivity of 5.

View Article and Find Full Text PDF

Ultrabroadband photodetection is of great significance in numerous cutting-edge technologies including imaging, communications, and medicine. However, since photon detectors are selective in wavelength and thermal detectors are slow in response, developing high performance and ultrabroadband photodetectors is extremely difficult. Herein, one demonstrates an ultrabroadband photoelectric detector covering visible, infrared, terahertz, and millimeter wave simultaneously based on single metal-Te-metal structure.

View Article and Find Full Text PDF

2D materials are considered to be the most promising materials for photodetectors due to their unique optical and electrical properties. Since the discovery of graphene, many photodetectors based on 2D materials have been reported. However, the low quantum efficiency, large noise, and slow response caused by the thinness of 2D materials limit their application in photodetectors.

View Article and Find Full Text PDF