Methoxy poly(ethylene glycol)-block-poly(L-lactide) (MPEG-b-PLLA) has a wide range of applications in pharmaceuticals and biology, and its structure and morphology have been thoroughly studied. In the experiment, we synthesized MPEG-b-PLLA with different block lengths using the principle of ring-opening polymerization by controlling the amount of lactic acid added. The thermodynamic properties of copolymers and the crystallization properties of blends were studied separately.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2023
An effective and practical antibacterial strategy is to design multifunctional and stimuli-responsive materials that exhibit antibacterial activity in response to bacterial triggers. In this study, because the metabolism of Staphylococcus aureus (S. aureus) can acidify the surrounding environment and pH level can affect the lower critical solution temperature of temperature/pH dual-sensitive polymers, a monomer containing a temperature-sensitive N-isopropyl amide derivative and pH-sensitive tertiary amine groups is first synthesized.
View Article and Find Full Text PDFOver the past three decades, its excellent biodegradability and biocompatibility have enabled poly(lactide) (PLA) to be extensively explored as a replacement for oil-based thermoplastics in biomedical and industrial applications. However, PLA homopolymers have "facilitative" limitations such as low mechanical properties, low processing temperatures, slow recrystallization, and insufficient crystallinity, which have usually hindered commercial PLA in industrial and biomedical applications. The formation of stereo-complexation between enantiomeric poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) chains offers an effective approach to PLA-based engineering materials with improved properties.
View Article and Find Full Text PDFThe isothermal crystallization behavior and corresponding morphology evolution of poly(d-lactic acid) (PDLA) blends with PLLA or MPEG--PLLA--glucose with different architectures and different PLLA-grafted copolymer contents were investigated. The formation of stereocomplexes (SCs) in between the chain branched structure of MPEG--PLLA--glucose and PDLA chains acting as the physical crosslinking points slows down the motion of PDLA chains, but the SCs could act as a heterogeneous nucleating agent for the late formation of homocrystals (HCs) in the blend system, accelerating the crystallization kinetics of HCs through enhancing the nucleation density. For PDLA/MPEG--PLLA--glucose blends, the mobility of SCs in the blend system and the nucleation density of SCs in the blends exhibit oppositional behavior during the isothermal crystallization at a of 130 °C.
View Article and Find Full Text PDFTo systematically explore the critical contributions of both molecular weights and crystallization temperature and chain length and molar ratios to the formation of stereocomplexes (SCs), our group quantitatively prepared a wide MW range of symmetric and asymmetric poly(lactic acid) (PLA) racemic blends, which contains L-MW PLLA with > 6k g/mol. The crystallinity and relative fraction of SCs increase with , and the SCs are exclusively formed at > 180 °C in M/H-MW racemic blends. When MWs of one of the enantiomers are over 6k and less than 41k, multiple stereocomplexation is clear in the asymmetric racemic blends and more ordered SCs form with less entanglement or the amorphous region compared to those for the MW of the enantiomers over 41k in the symmetric/asymmetric enantiomers.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2022
Surface patterning is a promising approach to prevent bacterial adhesion and biofilm formation without the concerns of antimicrobial resistance. To determine the parameters of a patterned surface that can affect bacterial behavior, a sphere-like coccus (Staphylococcus aureus) was investigated on a series of polyurethane films with ordered hemisphere patterns. The bacterial retention data in a growth medium indicated that the surface patterns significantly decreased bacterial adhesion and proliferation.
View Article and Find Full Text PDFNitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1-4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures.
View Article and Find Full Text PDFPoly(l-lactic acid) with high molecular weight was used to prepare PLLA films by means of the solvent casting technique. Poly(d-lactic acid) (PDLA) and poly(d-lactic acid--glucose) copolymer (PDLAG) with a low molecular weight were synthesized from d-lactic acid and glucose through melt polycondensation. PLLA films were immersed in PDLA or PDLAG solution to prepare surface-modified PLLA films.
View Article and Find Full Text PDFThe micropore structure is prerequisite for fast and durable endothelialization of artificial small diameter blood vessels (ASDBVs). Although some methods, such as salt leaching, coagulation, and electrospinning, have been developed to construct micropores for ASDBVs, the uncontrollability of the structure and the complicated procedures of the process are still the issues to be concerned about. In this study, a compact device based on the principle of centrifugal force is established and used to prepare polyurethane (PU) ASDBVs with micropore structures by blasting different porogens.
View Article and Find Full Text PDFThe stereocomplex of poly(lactic acid) containing glucose groups (sc-PLAG) was prepared by solution blending from equal amounts of poly(l-lactic acid) (PLLA) and poly(d-lactic acid--glucose) (PDLAG), which were synthesized from l- and d-lactic acid and glucose by melt polycondensation. The methods, including H nuclear magnetic resonance spectroscopy (H NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), polarizing microscope (POM), scanning electron microscope (SEM), transmission electron microscope (TEM), and contact angle were used to determine the effects of the stereocomplexation of enantiomeric poly(lactic acid) (PLA) units, the amphiphilicity due to glucose residues and lactic acid units, and the interaction of glucose residues with lactic units on the crystallization performance, hydrophilicity, thermal stability, and morphology of samples. The results showed PDLAG was multi-armed, and partial OH groups of glucose residues in PDLAG might remain unreacted.
View Article and Find Full Text PDFTwo new nickel (II) triphenylphosphine complexes derived from tridentate aroylhydrazone ligands [HL = 2-hydroxy-3-methoxybenzylidene)benzohydrazone and HL = '-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone] and triphenylphosphine were prepared and their molecular structures were determined by single crystal X-ray diffraction analysis. Both nickel(II) complexes showed slightly distorted square planar geometry with one tridentate aroylhydrazone ligand coordinated through ONO donor atoms and one triphenylphosphine ligand coordinated to the nickel center through the phosphorus atom. DNA interaction studies indicated that both complexes possessed higher affinity to herring sperm DNA (HS-DNA) than the corresponding free aroylhydrazone ligand.
View Article and Find Full Text PDFIn the work, we have synthesized silver (Ag) nanoparticles deposited chitosan (CS) microcapsules with magnetic multiple FeO cores (denoted as FeO/CS-Ag) as efficient catalysts for the reduction of 4-nitrophenol. The FeO/CS-Ag catalysts are prepared by coating hydrophobic FeO nanoparticles with chitosan via a multiple emulsion-chemical crosslinking method and following in situ deposition of Ag nanoparticles onto the surfaces. The morphology and composition of the FeO/CS-Ag microcapsules are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFPoly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.
View Article and Find Full Text PDFIn the present study, alginate nanoparticles were firstly prepared for paclitaxel (PTX) delivery with an average size of 200 ± 21 nm. To improve the stability and targeting effect, the chitosan (CS) and folate-chitosan (FA-CS) were introduced to form PTX-loaded CS/ALG NPs and FA-CS/ALG NPs by a new double emulsion cross-linking electrostatic attraction method. The optimization chitosan concentration was 0.
View Article and Find Full Text PDFMonodispersed hollow mesoporous silica nanoparticles (HMSNs) are successfully synthesized via a facile dual template method, in which poly(styrene-co-methyl methacrylate-co-methacrylic acid) (PS-PMMA-PMAA) particles are used as hard template for producing the hollow structure and cetyltrimethylammonium bromide (CTAB) used for introducing the mesopores in the silica shells. The obtained HMSNs possess uniform diameter and morphology, and the shell of which could be adjusted by changing the addition of silicon precursor. The synthesized HMSNs have been characterized by transmission electron microscopy (TEM) and nitrogen physisorption.
View Article and Find Full Text PDFA new chitosan microparticles loading paclitaxel (PTX) for application as an oral delivery system were developed using a novel double emulsion crosslinking method. To improve the targeted effect, folic acid (FA) was introduced onto the surface of microparticles using chemical method. The method was based on Schiff reaction between amino group of chitosan and carboxyl group of FA, and folate-chitosan (FA-CS) conjugate was characterized using infrared spectrum analysis (FT-IR), and the microparticles were named as FA-CS-PTX/MPs.
View Article and Find Full Text PDF