Stretchable organic photovoltaics (OPVs) have attracted significant attention as promising power sources for wearable electronic systems owing to their superior robustness under repetitive tensile strains and their good compatibility. However, reconciling a high power-conversion efficiency and a reasonable flexibility is a tremendous challenge. In addition, the development of stretchable OPVs must be accelerated to satisfy the increasing requirements of niche markets for mechanical robustness.
View Article and Find Full Text PDFThe wearable application of flexible organic solar cells (f-OSCs) necessitates high power conversion efficiency (PCE) and mechanical robustness. However, photoactive films based on efficient non-fullerene small molecule acceptors (NF-SMAs) are typically brittle, leading to poor mechanical stability in devices. In this study, we achieved a remarkable PCE of 18.
View Article and Find Full Text PDFHigh power conversion efficiency (PCE) and mechanical robustness are key requirements for wearable applications of organic solar cells (OSCs). However, almost all highly efficient photoactive films comprising polymer donors (P ) and small molecule acceptors (SMAs) are mechanically brittle. In this study, highly efficient (PCE = 17.
View Article and Find Full Text PDFThere is always a dilemma between strong π-π stacking/crystallinity and suitable domain size for all-small-molecule organic solar cells (ASM-OSCs), which puts forward higher requirements for the design of molecular donors. In this work, a series of novel molecular donors with different positional 2-ethylhexy (EH) attachments are designed and synthesized, named SM-R, SM-REH, SM-EH-R, and SM-EH-REH. It is found that EH-substitution on end groups (SM-REH) enables improved π-π interaction and crystallinity but with decreased solubility and phase size, leading to the improved efficiency of 15.
View Article and Find Full Text PDFFine-tuning the phase-separated morphology is of great importance to achieve efficient all-small-molecule organic solar cells (ASM-OSCs). In this work, a pair of isomers are designed and synthesized, namely, BDT-UF and BDT-DF, in which the fluorine atom in BDT-UF is close to the alkyl chain of side-chain thiophene, while that in BDT-DF is close to the center core. Owing to the noncovalent interaction between fluorine and hydrogen, BDT-DF shows a smaller dihedral angle between the thiophene side chain and the BDT core, which causes better molecular planarity.
View Article and Find Full Text PDFAsymmetric substitution of end-groups is first applied in molecular donors. Three commonly used end-groups of 2-ethylhexyl cyanoacetate (CA), 2-ethylhexyl rhodanine (Reh), and 1H-indene-1,3(2H)-dione (ID) are combined to construct a series of symmetric and asymmetric donors. Correspondingly, the asymmetric donors SM-CA-Reh and SM-CA-ID show largely increased dipole moments (2.
View Article and Find Full Text PDF