Mater Today Bio
February 2025
Gastric cancer (GC) is a formidable adversary in the field of oncology. The low early diagnosis rate of GC results in a low overall survival rate. Therefore, early accurate diagnosis and effective treatment are the key to reduce the mortality of GC.
View Article and Find Full Text PDFReproductive health-related diseases have a significant impact on the well-being of millions of women worldwide, severely compromising their quality of life. Women encounter unique challenges in terms of reproductive health, including gynecological diseases and malignant neoplasms prior to pregnancy, as well as complications during pregnancy that greatly undermine their physical and mental health. Despite recent advancements in the field of female reproduction, substantial challenges still persist.
View Article and Find Full Text PDFStimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety.
View Article and Find Full Text PDFTo build a smart system in response to the variable microenvironment in infected diabetic wounds, a multifunctional wound dressing was constructed by co-incorporating glucose oxidase (GOx) and a pH-responsive self-assembly CuSe-BSA nanozyme into a dual-dynamic bond cross-linked hydrogel (OBG). This composite hydrogel (OBG@CG) can adhere to the wound site and respond to the acidic inflammatory environment, initiating the GOx-catalyzed generation of HO and the self-assembly activated peroxidase-like property of CuSe-BSA nanozymes, resulting in significant hydroxyl radical production to attack the biofilm during the acute infection period and alleviate the high-glucose microenvironment for better wound healing. During the wound recovery phase, CuSe-BSA aggregates disassembled owing to the elevated pH, terminating catalytic reactive oxygen species generation.
View Article and Find Full Text PDFCancer, as one of the leading causes of death worldwide, drives the advancement of cutting-edge technologies for cancer treatment. Transition-metal-based nanozymes emerge as promising therapeutic nanodrugs that provide a reference for cancer therapy. In this review, we present recent breakthrough nanozymes for cancer treatment.
View Article and Find Full Text PDFAtherosclerotic plaque formation is considered the primary pathological mechanism underlying atherosclerotic cardiovascular diseases, leading to severe cardiovascular events such as stroke, acute coronary syndromes, and even sudden cardiac death. Early detection and timely intervention of plaques are challenging due to the lack of typical symptoms in the initial stages. Therefore, precise early detection and intervention play a crucial role in risk stratification of atherosclerotic plaques and achieving favorable post-interventional outcomes.
View Article and Find Full Text PDFMultimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy.
View Article and Find Full Text PDFDue to the disadvantages of poor targeting, slow action, and low effectiveness of current commonly used cancer treatments, including surgery, chemotherapy, and radiotherapy, researchers have turned to DNA as a biomaterial for constructing drug delivery nanocarriers. DNA is favored for its biocompatibility and programmability. In order to overcome the limitations associated with traditional drug delivery systems (DDSs), researchers have developed smart-responsive DNA DDSs that can control drug release in response to specific physical or chemical stimuli at targeted sites.
View Article and Find Full Text PDFDynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction.
View Article and Find Full Text PDFStimuli-responsive polymers can respond to internal stimuli, such as reactive oxygen species (ROS), glutathione (GSH), and pH, biological stimuli, such as enzymes, and external stimuli, such as lasers and ultrasound, , by changing their hydrophobicity/hydrophilicity, degradability, ionizability, , and thus have been widely used in biomedical applications. Due to the characteristics of the tumor microenvironment (TME), stimuli-responsive polymers that cater specifically to the TME have been extensively used to prepare smart nanovehicles for the targeted delivery of therapeutic and diagnostic agents to tumor tissues. Compared to conventional drug delivery nanosystems, TME-responsive nanosystems have many advantages, such as high sensitivity, broad applicability among different tumors, functional versatility, and improved biosafety.
View Article and Find Full Text PDFUnderstanding the pharmacokinetics of prodrugs necessitates quantitative, noninvasive, and real-time monitoring of drug release, despite its difficulty. Ratiometric photoacoustic (PA) imaging, a promising deep tissue imaging technology with a unique capacity for self-calibration, can aid in solving this problem. Here, for the first time, a methylamino-substituted Aza-BODIPY (BDP-N) and the chemotherapeutic drug camptothecin (CPT) are joined via a disulfide chain to produce the molecular theranostic prodrug (BSC) for real-time tumor mapping and quantitative visualization of intratumoral drug release using ratiometric PA imaging.
View Article and Find Full Text PDFSmall Methods
January 2024
Radiotherapy (RT) has been a classical therapeutic method of cancer for several decades. It attracts tremendous attention for the precise and efficient treatment of local tumors with stimuli-responsive nanomaterials, which enhance RT. However, there are few systematic reviews summarizing the newly emerging stimuli-responsive mechanisms and strategies used for tumor radio-sensitization.
View Article and Find Full Text PDFJ Nanobiotechnology
October 2023
Multi-drug resistant (MDR) bacterial infections are gradually increasing in the global scope, causing a serious burden to patients and society. The formation of bacterial biofilms, which is one of the key reasons for antibiotic resistance, blocks antibiotic penetration by forming a physical barrier. Nano/micro motors (MNMs) are micro-/nanoscale devices capable of performing complex tasks in the bacterial microenvironment by transforming various energy sources (including chemical fuels or external physical fields) into mechanical motion or actuation.
View Article and Find Full Text PDFPhotodynamic therapy has been used as a treatment option for cancer; however, the existing TiO photosensitizer does not have the ability to specifically target cancer cells. This lack of selectivity reduces its effectiveness in overcoming cancer resistance. To improve photodynamic therapy outcomes, an innovative solution is proposed.
View Article and Find Full Text PDFSonodynamic therapy (SDT) has gained significant attention in the treatment of deep tumors and multidrug-resistant (MDR) bacterial infections due to its high tissue penetration depth, high spatiotemporal selectivity, and noninvasive therapeutic method. SDT combines low-intensity ultrasound (US) and sonosensitizers to produce lethal reactive oxygen species (ROS) and external damage, which is the main mechanism behind this therapy. However, traditional organic small-molecule sonosensitizers display poor water solubility, strong phototoxicity, and insufficient targeting ability.
View Article and Find Full Text PDFAdv Healthc Mater
January 2024
Pyroptosis differs significantly from apoptosis and cell necrosis as an alternative mode of programmed cell death. Its occurrence is mediated by the gasdermin protein, leading to characteristic outcomes including cell swelling, membrane perforation, and release of cell contents. Research underscores the role of pyroptosis in the etiology and progression of many diseases, making it a focus of research intervention as scientists explore ways to regulate pyroptosis pathways in disease management.
View Article and Find Full Text PDFBiosensing by optical probes is bringing about a revolution in our understanding of physiological and pathological states. Conventional optical probes for biosensing are prone to inaccurate detection results due to various analyte-independent factors that can lead to fluctuations in the absolute signal intensity. Ratiometric optical probes provide built-in self-calibration signal correction for more sensitive and reliable detection.
View Article and Find Full Text PDFNucleic acid nanomaterials with good biocompatibility, biodegradability, and programmability have important applications in biomedical field. Nucleic acid nanomaterials are usually combined with some inorganic nanomaterials to improve their biological stability. However, undefined toxic side effects of composite nanocarriers hamper their application in vivo.
View Article and Find Full Text PDFComputed tomography (CT), a diagnostic tool with clinical application, comprehensive coverage, and low cost, is used in hospitals worldwide. However, CT imaging fails to distinguish soft tissues from normal organs and tumors because their mass attenuation coefficients are similar. Various CT contrast agents have been developed in recent years to improve the sensitivity and contrast of imaging.
View Article and Find Full Text PDFRadiosensitizers potentiate the radiotherapy effect while effectively reducing the damage to healthy tissues. However, limited sample accumulation efficiency and low radiation energy deposition in the tumor significantly reduce the therapeutic effect. Herein, we developed multifunctional photocatalysis-powered dandelion-like nanomotors composed of amorphous TiO components and Au nanorods (∼93 nm in length and ∼16 nm in outer diameter) by a ligand-mediated interface regulation strategy for NIR-II photoacoustic imaging-guided synergistically enhanced cancer radiotherapy.
View Article and Find Full Text PDFSystemic cancer therapy is always accompanied with toxicity to normal tissue, which has prompted concerted efforts to develop precise treatment strategies. Herein, we firstly develop an approach that enables spatiotemporally controlled formation and rotation of magnetic nanochains in vivo, allowing for precise mechanotherapy of tumor. The nanochain comprised nanocomposites of pheophorbide-A (PP) modified iron oxide nanoparticle (IONP) and lanthanide-doped down-conversion NP (DCNP).
View Article and Find Full Text PDFOwing to the high sensitivity and high spatial resolution, fluorescence (FL) imaging has been widely applied for visualizing biological processes. To gain insight into molecular events on deeper tissues, photoacoustic (PA) imaging with better deep-tissue imaging capability can be incorporated to provide complementary visualization and quantitative information on the pathological status. However, the development of activatable imaging probes to achieve both FL and PA signal amplification remains challenging because the enhancement of light absorption in PA imaging often caused the quenching of FL signal.
View Article and Find Full Text PDFPhotoacoustic imaging (PAI) has attracted great attention in the diagnosis and treatment of diseases due to its noninvasive properties. Especially in the second near-infrared (NIR-II) window, PAI can effectively avoid the interference of tissue spontaneous fluorescence and light scattering, and obtain high resolution images with deeper penetration depth. Because of its ideal spectral absorption and high conversion efficiency, NIR-II PA contrast agents overcome the absorption or emission of NIR-II light by endogenous biomolecules.
View Article and Find Full Text PDFMolecular organic dyes are classic fluorescent nanoprobes finding tremendous uses in biological and life sciences. Yet, they suffer from low brightness, poor photostability, and lack of functional groups for bioconjugation. Here, we describe a class of biocompatible dye-protein optical nanoprobes, which show long-time photostability, superbrightness, and enriched functional groups.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2022
Delays in evaluating cancer response to radiotherapy (RT) usually reduce therapy effect or miss the right time for treatment optimization. Hence, exploring timely and accurate methods enabling one to gain insights of RT response are highly desirable. In this study, we have developed an apoptosis enzyme (caspase-3) activated nanoprobe for early evaluation of RT efficacy.
View Article and Find Full Text PDF