Publications by authors named "Qinpeng Chen"

Vancomycin fermentation residue (VFR) is a by-product of the pharmaceutical industry with high ecotoxicity caused by the residual antibiotics, antibiotic resistance genes (ARGs), and heavy metals (HMs). In this study, the detoxification effect of hydrothermal treatment (HT) and pyrolysis for VFR was assessed using chemical analysis and toxicity tests. When VFR was subjected to HT and pyrolysis at ≥400 °C, more than 99.

View Article and Find Full Text PDF

Pyrolysis is a promising method to treat antibiotic fermentation residue (AFR), a hazardous waste in China, with the benefits of detoxification and resource recycling. However, the application of the AFR-derived biochar has been limited yet, restricting the use of pyrolysis to treat AFR. Herein, for the first time, we reported the use of magnetic biochars derived from vancomycin fermentation residue to rapidly and efficiently co-adsorb multiple heavy metals from diverse types of water with complex matrices.

View Article and Find Full Text PDF

Ca/Fe-rich antibiotic fermentation residues (AFRs), a type of hazardous waste, can be regarded as recyclable biomass and metal resources. However, concurrent detoxification and reutilization of biomass and metals resources from AFRs have never been reported before. In this study, Ca/Fe-rich vancomycin fermentation residues were pyrolyzed into biochar to adsorb phosphate for the first time.

View Article and Find Full Text PDF

The pursuit of compact and integrated devices has stimulated a growing demand for multifunctional sensors with rapid and accurate responses to various physical parameters, either separately or simultaneously. Fluorescent fiber sensors have the advantages of robust stability, light weight, and compact geometry, enabling real-time and noninvasive signal detection by monitoring the fluorescence parameters. Despite substantial progress in fluorescence sensors, achieving multifunctional sensing in a single optical fiber remains challenging.

View Article and Find Full Text PDF

In this study, a novel and low-cost seawater-modified biochar (SBC) was fabricated via the pyrolysis of fir wood waste followed by co-precipitation modification using seawater as the Ca/Mg source. The co-precipitation pH was a vital factor during modification, and the optimal pH was 10.50 according to calculations using PHREEQC 2.

View Article and Find Full Text PDF

The high-precision patterning of metal halide perovskites (MHPs) is of paramount importance for their device application. Here, we demonstrate the femtosecond (fs)-laser-assisted formation of three-dimensional MHP nanocrystal (NC) patterns with strong blue photoluminescence (PL) inside an oxide glass. Our strategy enables the crystallization and erasing of CsPb(Cl/Br) NCs inside a glass localized around the laser focal area through a combination of fs laser irradiation and thermal treatment processes.

View Article and Find Full Text PDF