Research Background: The role of osteocytes in maintaining bone mass has been progressively emphasized. Pip5k1c is the most critical isoform among PIP5KIs, which can regulate cytoskeleton, biomembrane, and Ca release of cells and participate in many processes, such as cell adhesion, differentiation, and apoptosis. However, its expression and function in osteocytes are still unclear.
View Article and Find Full Text PDFObjective: While joint immobilization is a useful repair method for intra-articular ligament injury and periarticular fracture, prolonged joint immobilization can cause multiple complications. A better understanding how joint immobilization and remobilization impact joint function and homeostasis will help clinicians develop novel strategies to reduce complications.
Design: We first determined the effects of long-term immobilization on joint pain and osteophyte formation in patients after an extraarticular fracture or ligament injury.
Mesenchymal stromal cells (MSCs) are used to treat infectious and immune diseases and disorders; however, its mechanism(s) remain incompletely defined. Here we find that bone marrow stromal cells (BMSCs) lacking Pinch1/2 proteins display dramatically reduced ability to suppress lipopolysaccharide (LPS)-induced acute lung injury and dextran sulfate sodium (DSS)-induced inflammatory bowel disease in mice. Prx1-Cre; Pinch1; Pinch2 transgenic mice have severe defects in both immune and hematopoietic functions, resulting in premature death, which can be restored by intravenous injection of wild-type BMSCs.
View Article and Find Full Text PDFOsteoporosis (OP) is a systemic skeletal disease that primarily affects the elderly population, which greatly increases the risk of fractures. Here we report that Kindlin-2 expression in adipose tissue increases during aging and high-fat diet fed and is accompanied by decreased bone mass. Kindlin-2 specific deletion (K2KO) controlled by mice or adipose tissue-targeting AAV (AAV-Rec2-CasRx-sgK2) significantly increases bone mass.
View Article and Find Full Text PDFIntroduction: Osteoarthritis (OA) is a devastating whole-joint disease affecting a large population worldwide with no cure; its mechanism remains poorly defined. Abnormal mechanical stress is the main pathological factor of OA.
Objectives: To investigate the effects of Piezo1 activation on OA development and progression and to explore Piezo1-targeting OA treatment.
Signal Transduct Target Ther
July 2023
Osteoarthritis (OA) is the most common degenerative joint disease affecting the older populations globally. Phosphatidylinositol-4-phosphate 5-kinase type-1 gamma (Pip5k1c), a lipid kinase catalyzing the synthesis of phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), is involved in various cellular processes, such as focal adhesion (FA) formation, cell migration, and cellular signal transduction. However, whether Pip5k1c plays a role in the pathogenesis of OA remains unclear.
View Article and Find Full Text PDFA novel sprayable adhesive is established (ZnMet-PF127) by the combination of a thermosensitive hydrogel (Pluronic F127, PF127) and a coordination complex of zinc and metformin (ZnMet). Here we demonstrate that ZnMet-PF127 potently promotes the healing of traumatic skin defect and burn skin injury by promoting cell proliferation, angiogenesis, collagen formation. Furthermore, we find that ZnMet could inhibit reactive oxygen species (ROS) production through activation of autophagy, thereby protecting cell from oxidative stress induced damage and promoting healing of skin wound.
View Article and Find Full Text PDFThe progressive destruction of condylar cartilage is a hallmark of the temporomandibular joint (TMJ) osteoarthritis (OA); however, its mechanism is incompletely understood. Here, we show that Kindlin-2, a key focal adhesion protein, is strongly detected in cells of mandibular condylar cartilage in mice. We find that genetic ablation of Kindlin-2 in aggrecan-expressing condylar chondrocytes induces multiple spontaneous osteoarthritic lesions, including progressive cartilage loss and deformation, surface fissures, and ectopic cartilage and bone formation in TMJ.
View Article and Find Full Text PDFBackground: The key focal adhesion protein β1 integrin plays an essential role in early skeletal development. However, roles of β1 integrin expression in osteocytes during the regulation of bone homeostasis and mechanotransduction are incompletely understood.
Materials And Methods: To study the in vivo function of osteocyte β1 integrin in bone, we utilized the 10-kb to generate mice with β1 integrin deletion in this cell type.
Phosphatidylinositol-4-phosphate 5-kinase type-1 gamma (Pip5k1c) is a lipid kinase that plays a pivotal role in the regulation of receptor-mediated calcium signaling in multiple tissues; however, its role in the skeleton is not clear. Here, we show that while deleting Pip5k1c expression in the mesenchymal stem cells using Prx1-Cre transgenic mice does not impair the intramembranous and endochondral ossification during skeletal development, it does cause osteopenia in adult mice, but not rapidly growing young mice. We found Pip5k1c loss dramatically decreases osteoblast formation and osteoid and mineral deposition, leading to reduced bone formation.
View Article and Find Full Text PDFOsteocytes act as mechanosensors in bone; however, the underlying mechanism remains poorly understood. Here we report that deleting Kindlin-2 in osteocytes causes severe osteopenia and mechanical property defects in weight-bearing long bones, but not in non-weight-bearing calvariae. Kindlin-2 loss in osteocytes impairs skeletal responses to mechanical stimulation in long bones.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2020
In vertebrates, the type 1 parathyroid hormone receptor (PTH1R) is a critical regulator of skeletal development and homeostasis; however, how it is modulated is incompletely understood. Here we report that deleting Kindlin-2 in osteoblastic cells using the mouse 10-kb Dmp1-Cre largely neutralizes the intermittent PTH-stimulated increasing of bone volume fraction and bone mineral density by impairing both osteoblast and osteoclast formation in murine adult bone. Single-cell profiling reveals that Kindlin-2 loss increases the proportion of osteoblasts, but not mesenchymal stem cells, chondrocytes and fibroblasts, in non-hematopoietic bone marrow cells, with concomitant depletion of osteoblasts on the bone surfaces, especially those stimulated by PTH.
View Article and Find Full Text PDFThe LIM domain-containing proteins Pinch1/2 regulate integrin activation and cell-extracellular matrix interaction and adhesion. Here, we report that deleting Pinch1 in limb mesenchymal stem cells (MSCs) and Pinch2 globally (double knockout; dKO) in mice causes severe chondrodysplasia, while single mutant mice do not display marked defects. Pinch deletion decreases chondrocyte proliferation, accelerates cell differentiation and disrupts column formation.
View Article and Find Full Text PDFβ-Cell dysfunction and reduction in β-cell mass are hallmark events of diabetes mellitus. Here we show that β-cells express abundant Kindlin-2 and deleting its expression causes severe diabetes-like phenotypes without markedly causing peripheral insulin resistance. Kindlin-2, through its C-terminal region, binds to and stabilizes MafA, which activates insulin expression.
View Article and Find Full Text PDFOur recent studies demonstrate that the focal adhesion protein Kindlin-2 is critical for chondrogenesis and early skeletal development. Here, we show that deleting Kindlin-2 from osteoblasts using the 2.3-kb mouse transgene minimally impacts bone mass in mice, but deleting Kindlin-2 using the 10-kb mouse transgene, which targets osteocytes and mature osteoblasts, results in striking osteopenia in mice.
View Article and Find Full Text PDFMammalian focal adhesion proteins Pinch1 and Pinch2 regulate integrin activation and cell-extracellular matrix adhesion and migration. Here, we show that deleting Pinch1 in osteocytes and mature osteoblasts using the 10-kb mouse Dmp1-Cre and Pinch2 globally (double KO; dKO) results in severe osteopenia throughout life, while ablating either gene does not cause bone loss, suggesting a functional redundancy of both factors in bone. Pinch deletion in osteocytes and mature osteoblasts generates signals that inhibit osteoblast and bone formation.
View Article and Find Full Text PDFKindlin-2 regulates integrin-mediated cell adhesion to and migration on the extracellular matrix. Our recent studies demonstrate important roles of kindlin-2 in regulation of mesenchymal stem cell differentiation and skeletal development. In this study, we generated adipose tissue-specific conditional knockout of kindlin-2 in mice by using Adipoq-Cre BAC-transgenic mice.
View Article and Find Full Text PDF