Publications by authors named "Qinming Xu"

In this study, the PEG-Glu-Lys-Glu copolymer drug delivery system (GO/PEG-Glu-Lys-Glu) is prepared using glutamate-lysine-glutamate (Glu-Lys-Glu) modified polyethylene glycol (PEG) and connected graphene oxide nanosheets (GO). The multiple carboxyl groups of Glu-Lys-Glu and π-π interactions of GO can increase drug loading rate, and the fluorescence characteristics of GO could monitor the distribution of drug-loading systems in cells and the uptake of cells without the need for external dyes. Paclitaxel (PTX) is loaded reduction-responsive disulfide bonds as a model medicine to examine the drug delivery potential of GO/PEG-Glu-Lys-Glu.

View Article and Find Full Text PDF

Background: Multidrug resistance (MDR) is the main reason for chemotherapy failure. Nanocarriers combined delivery of anti-cancer drugs and MDR inhibitors is an effective strategy to avoid MDR and improve the anti-cancer activity of drugs.

Methods: Two paclitaxel (PTX) molecules are linked by disulfide bonds into PTX.

View Article and Find Full Text PDF

Four peptide amphiphiles (PA1-4) with different degrees of polymerization (DP = 40, 15, 10, and 6) were synthesized by Fuchs-Farthing and ring-opening polymerization followed by post-polymerization modification, as fully characterized by H NMR, FT-IR, gel permeation chromatography, and circular dichroism (CD) spectroscopy. It was found that PAs could self-assemble to form regular spherical micelles in low-concentration (about 1 mg/mL) aqueous solution, which had different contents of secondary structures and mainly adopted random coil conformations. The water solubility of PAs increases with the increase of DP, the polypeptide chain stretches randomly in water, the β-sheets decrease, and the random coil conformations dominate.

View Article and Find Full Text PDF