Publications by authors named "Qinling Yuan"

Article Synopsis
  • Human mesenchymal stem cells (hMSCs) react to mechanical stimuli like stiffness and fluid viscosity, which impacts their behavior.
  • In environments with high fluid viscosity, hMSCs favor an osteogenic (bone-forming) phenotype over an adipogenic (fat-forming) one by altering their actin structure and enhancing cellular activities.
  • This research highlights fluid viscosity as an important factor that not only influences hMSC differentiation but also encourages a more immunosuppressive M2 macrophage phenotype.
View Article and Find Full Text PDF

Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive.

View Article and Find Full Text PDF

Casposase, a homolog of Cas1 integrase, is encoded by a superfamily of mobile genetic elements known as casposons. While family 2 casposase has been well documented in both function and structure, little is known about the other three casposase families. Here, we studied the family 1 casposase lacking the helix-turn-helix (HTH) domain from Candidatus Nitrosopumilus koreensis AR1 (Ca.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) combined with oxygenating strategies is widely employed in cancer treatment; however, oxygen-boosted PDT has failed to achieve an ideal effect due to the complexity, heterogeneity, and irreversible hypoxic environment generated by tumor tissues. With the emergence of Fe-dependent ferroptosis boasting reactive oxygen species (ROS) cytotoxicity as well, such a chemodynamic approach to cancer therapy has drawn extensive attention. In this study, hemoglobin (Hb) is connected with the photosensitizer chlorin e6 (Ce6) to construct a 2-in-1 nanoplatform (SRF@Hb-Ce6) with Sorafenib (SRF, ferroptosis promotor) loaded, combining oxygen-boosted PDT and potent ferroptosis.

View Article and Find Full Text PDF