Publications by authors named "Qinling Deng"

Electromagnetic metasurfaces have been intensively used as ultra-compact and easy-to-integrate platforms for versatile wave manipulations from optical to terahertz (THz) and millimeter wave (MMW) ranges. In this paper, the less investigated effects of the interlayer coupling of multiple metasurfaces cascaded in parallel are intensively exploited and leveraged for scalable broadband spectral regulations. The hybridized resonant modes of cascaded metasurfaces with interlayer couplings are well interpreted and simply modeled by the transmission line lumped equivalent circuits, which are used in return to guide the design of the tunable spectral response.

View Article and Find Full Text PDF

Active wave manipulation by ultracompact meta-devices is highly embraced in recent years, but a major concern still exists due to the lack of functional reconfigurability. Moreover, the phase or amplitude discontinuities introduced by collective response of discrete meta-atoms make current meta-devices far from practical applications. Here, we demonstrate actively tunable wavefront control with high-efficiency by combining catenary-based meta-atoms for intrinsic continuous phase regulation with the chalcogenide phase change material (PCM) of GeSbTe.

View Article and Find Full Text PDF

In recent decades, metasurfaces have emerged as an exotic and appealing group of nanophotonic devices for versatile wave regulation with deep subwavelength thickness facilitating compact integration. However, the ability to dynamically control the wave-matter interaction with external stimulus is highly desirable especially in such scenarios as integrated photonics and optoelectronics, since their performance in amplitude and phase control settle down once manufactured. Currently, available routes to construct active photonic devices include micro-electromechanical system (MEMS), semiconductors, liquid crystal, and phase change materials (PCMs)-integrated hybrid devices, etc.

View Article and Find Full Text PDF