Cancer vaccines represent a promising immunotherapeutic treatment modality. The promotion of cross-presentation of extracellular tumor-associated antigens on the major histocompatibility complex (MHC) class I molecules and dendritic cell maturation at the appropriate time and place is crucial for cancer vaccines to prime cytolytic T cell response with reduced side effects. Current vaccination strategies, however, are not able to achieve the spatiotemporal control of antigen cross-presentation.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has been widely used for the local treatment of a variety of cancer. To improve the therapeutic effect, delicate nanoparticles loading photosensitizers (PSs) have been designed to improve the accumulation of PSs in tumor. Different from the anti-cancer drugs for chemotherapy or immunotherapy, the delivery of PSs requires rapid tumor accumulation followed by quick elimination to reduce the potential risk of phototoxicity.
View Article and Find Full Text PDFAlthough the immune checkpoint blockade (ICB) has made a great success in cancer immunotherapy, the overall response rate to the ICB, such as anti-programmed death ligand 1 (PD-L1) therapy, remains only at 20-30%. One major reason is the low expression level of the immune checkpoint in a certain type of tumor cells and its insufficient activation of the host immune system. Herein, we reported a cyclic RGD (cRGD)-modified liposomal delivery system loading the anti-PD-L1 antibody and the photosensitizer pheophorbide A (Pa), allowing a targeting of the low PD-L1 expressing 4T1 mouse breast cancer cells through the recognition of an overexpression of αβ integrin on the tumor cells.
View Article and Find Full Text PDF