Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis. According to deep learning model, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNN) and dense micro-block difference feature (DMDF) into a unified framework so as to obtain segmentation results with appearance and spatial consistency. Firstly, we propose a local feature to describe the rotation invariant property of the texture.
View Article and Find Full Text PDF