Publications by authors named "Qinjun Peng"

The superconducting gap symmetry is crucial in understanding the underlying superconductivity mechanism. Angle-resolved photoemission spectroscopy (ARPES) has played a key role in determining the gap symmetry in unconventional superconductors. However, it has been considered so far that ARPES can only measure the magnitude of the superconducting gap but not its phase; the phase has to be detected by other phase-sensitive techniques.

View Article and Find Full Text PDF

The latest discovery of high temperature superconductivity near 80 K in LaNiO under high pressure has attracted much attention. Many proposals are put forth to understand the origin of superconductivity. The determination of electronic structures is a prerequisite to establish theories to understand superconductivity in nickelates but is still lacking.

View Article and Find Full Text PDF

A high power single-frequency operation at 1112 nm with novel insertable monolithic planar ring oscillator based on a Nd:YAG/YAG bonded crystal is proposed. In a proof-of-principle experiment, a finely designed coating on the output surface is carried out to ensure single-wavelength oscillation at 1112 nm, together with a half-wave plate and a TbGaO crystal inserted in the open space of the bonded block to realize the unidirectional operation with power scalability. Consequently, the single-frequency laser delivers an output power of 3.

View Article and Find Full Text PDF
Article Synopsis
  • In conventional superconductors, electron-phonon coupling is key to superconductivity, but the mechanisms in high-temperature cuprate superconductors remain uncertain.
  • Recent findings from ultrahigh-resolution laser-based angle-resolved photoemission (ARPES) reveal two electron-mode couplings at 70-meV and 40-meV in various cuprate superconductors, suggesting that these couplings are linked to phonons.
  • The study also uncovers a complex "peak-dip-hump" structure in the electronic properties that indicates more intricate interactions, providing insights into the role of these energy scales in achieving high-temperature superconductivity.
View Article and Find Full Text PDF

We present a multilevel synergically controlling wavefront correction method that can apply in a slab laser system. To fully utilize the response frequency and the stroke of actuators of the single deformable mirror (DM), we design a set of multilevel wavefront correction devices to reduce the root-mean square of wavefront aberration before the DM. As the wavefront of slab geometry solid-state lasers mainly consists of fourth and longitudinally distributed aberration, such as 5th, 9th, and 14th orders of Legendre polynomials.

View Article and Find Full Text PDF

Kagome lattices of various transition metals are versatile platforms for achieving anomalous Hall effects, unconventional charge-density wave orders and quantum spin liquid phenomena due to the strong correlations, spin-orbit coupling and/or magnetic interactions involved in such a lattice. Here, we use laser-based angle-resolved photoemission spectroscopy in combination with density functional theory calculations to investigate the electronic structure of the newly discovered kagome superconductor CsTiBi, which is isostructural to the AVSb (A = K, Rb or Cs) kagome superconductor family and possesses a two-dimensional kagome network of titanium. We directly observe a striking flat band derived from the local destructive interference of Bloch wave functions within the kagome lattice.

View Article and Find Full Text PDF

An external-cavity dumped nanosecond (ns) ultra-broad-area laser diode (UBALD) at around 966 nm with high pulse energy is demonstrated. A 1 mm UBALD is used to produce high output power and high pulse energy. A Pockels cell (PC) combines with two polarization beam splitters (PBSs) and is employed to cavity-dump a UBALD operating at 10 kHz repetition rate.

View Article and Find Full Text PDF

In this letter, a sub-pm linewidth, high pulse energy and high beam quality microsecond-pulse 766.699 nm Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. At an incident pump energy of 824 mJ, the maximum output energy of 132.

View Article and Find Full Text PDF

An integrated aberration-compensating module (IACM), consisting mainly of an adjustable slab-aberration compensator, a one-dimensional Shack-Hartmann wavefront sensor, and a data processor, which meet the urgent requirements of correcting the specific wavefront aberrations of a slab laser based on an off-axis stable-unstable resonator, is designed and experimentally demonstrated. Benefits include compactness, robustness, simplicity, automation, and cost-effectiveness. The particular wavefront aberrations of the 9 kW level quasi-continuous-wave Nd:YAG slab laser, which have characteristics of asymmetry, large amplitude and gradient, high spatial frequency, and low temporal frequency, were measured and theoretically analyzed.

View Article and Find Full Text PDF

A compact 200 W level diode-side-pumped microsecond (µs) pulse linearly polarized rod Nd:YAG laser oscillator was demonstrated with nearly diffraction-limited beam quality. The oscillator was based on a thermally near-unstable cavity design with two concave lenses in the cavity to enlarge the volume of the fundamental mode, leading to improvement of the laser efficiency and beam quality. Consequently, a record-high average power of 222 W was obtained at a repetition rate of 400 Hz with a 180 µs pulse width, corresponding to an optical-to-optical (o-o) conversion efficiency of 37%.

View Article and Find Full Text PDF

We present a kilowatt-level quasi-continuous-wave (QCW) cryogenically cooled 946-nm slab laser oscillator for the first time, to the best of our knowledge. The laser system is based on a double-face-pumped large-size single-slab Nd:YAG design, delivering a record-high average power of 1.06 kW without additional amplification.

View Article and Find Full Text PDF

The geometric aberration of centered refracting double-plane symmetric optical systems (DPSOS) is investigated. For DPSOS with different defocus values in the tangential plane and the sagittal plane (astigmatic wavefront), a pair of curved reference surfaces which vanishes the quadratic terms of the optical path difference (OPD) between a general ray and a reference ray are deduced. With the curved reference surfaces, the primary (fourth-order) wave aberration function for DPSOS is calculated and analyzed, which can be used for beam shaping designs with astigmatic input wavefront, such as slab lasers and semiconductor lasers.

View Article and Find Full Text PDF

A compact and robust all-solid-state mid-infrared (MIR) laser at 6.45 µm with high average output power and near-Gaussian beam quality is demonstrated. A maximum output power of 1.

View Article and Find Full Text PDF

For reshaping aperture size and correcting low-order aberration of laser beams with large aspect ratios, a simplified analytical method is proposed to design an anamorphic refractive shaping system, which is composed of double-plane symmetric lenses. The simplified method enables performing a global study of aberrations via calculating the analytical primary wave aberration function under paraxial approximation. The aberration balance is analyzed with a three-lens laser collimating system and a compact four-lens laser expanding system.

View Article and Find Full Text PDF

The electronic structure and superconducting gap structure are prerequisites to establish microscopic theories in understanding the superconductivity mechanism of iron-based superconductors. However, even for the most extensively studied optimally-doped (BaK)FeAs, there remain outstanding controversies on its electronic structure and superconducting gap structure. Here we resolve these issues by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements on the optimally-doped (BaK)FeAs superconductor using both Helium lamp and laser light sources.

View Article and Find Full Text PDF

A high-power continuous-wave (CW) ultraviolet (UV) laser at 378 nm from an intracavity frequency-doubled Alexandrite laser has been demonstrated with 638 nm fiber-coupled laser diodes as the pump source. A maximum output power of 2.55 W was obtained, which is the highest power for CW frequency-doubled Alexandrite lasers, to the best of our knowledge, corresponding to the optical-to-optical conversion efficiency of 7.

View Article and Find Full Text PDF

High-power solid-state lasers with good beam quality are attracting great attention on account of their important applications in industry and military. However, the thermal effects generated in the laser host materials seriously limit power scaling and degrade the beam quality. Thermal lensing and thermally induced wavefront deformation are the main causes of the beam quality deterioration.

View Article and Find Full Text PDF

A newly developed instrument comprising a near ambient pressure (NAP) photoemission electron microscope (PEEM) and a tunable deep ultraviolet (DUV) laser source is described. This NAP-PEEM instrument enables dynamic imaging of solid surfaces in gases at pressures up to 1 mbar. A diode laser (976 nm) can illuminate a sample from the backside for in situ heating in gases up to 1200 K in minutes.

View Article and Find Full Text PDF

A stable, 22.9 W, 671 nm single-frequency laser using a type II noncritically phase-matched external-cavity frequency doubling is demonstrated. The output power of the fundamental laser is 32.

View Article and Find Full Text PDF
Article Synopsis
  • A high-power yellow laser at 589 nm is essential for sodium beacon adaptive optics systems in telescopes.
  • A new compact quasi-continuous-wave (QCW) solid-state laser achieves 86.1 W output power with high beam quality, adjustable pulse durations, and repetition rates between 400 Hz and 1 kHz.
  • This laser can be finely tuned to the sodium D line, making it the most powerful all-solid-state sodium guide star laser reported, advancing multi-conjugate adaptive optics for large telescopes.
View Article and Find Full Text PDF

A 100 W level kilohertz repetition-rate microsecond (µs)-pulse all-solid-state sodium beacon laser at 589 nm is demonstrated for the first time, to the best of our knowledge, via combining two independent µs-pulsed lasers. Each beamlet is generated by the sum-frequency mixing of pulsed 1064 and 1319 nm lasers in a lithium triborate (LBO) crystal, which operate at 500 Hz pulse repetition frequency with 61 W $p$p-polarized and 53 W $s$s-polarized output, respectively. An incoherent sequence combining technology of polarized laser beams is employed to add the two beamlets.

View Article and Find Full Text PDF

We present a power-scalable high-power single-frequency continuous-wave 1342 nm master oscillator power amplifier (MOPA) system that consists of a polarized single-frequency 1342 nm LD seed laser, a Raman fiber preamplifier, and a three-stage ${\rm Nd}:{{\rm YVO}_4}$Nd:YVO power amplifier. The single-frequency output power of 30 W at 1342 nm is achieved with the beam quality factors ${{\rm M}^{2\:}} = {1}.{26}$M=1.

View Article and Find Full Text PDF

An adjustable slab-aberration compensator (ASAC) with the ability to compensate the large magnitude inherent wavefront aberrations in the slab width direction is proposed and experimentally demonstrated. The ASAC has a size of 130mm×45mm (effective aperture of 75mm×28mm) and 11 actuators along the length with a contact spacing of 8 mm. The design is optimized by simulations in terms of the mirror's coupling coefficient with the contact areas, mechanical properties of the driving units, and the mirror thickness.

View Article and Find Full Text PDF

A void-free bonding technique was demonstrated for a large slab Nd: YAG crystal with a bonding surface dimension of ∼160×70. By using the novel fluxless oxide layer removal technology, the indium-oxide barrier problem was resolved. With the help of electrochemical-polished indium solder and a plasma-cleaned heat sink, the solderability of the indium was enhanced; in particular, the contact angle of the solder was improved from 51° to 31°.

View Article and Find Full Text PDF

A 24.6 kW quasi-continuous-wave (QCW) Nd-doped yttrium aluminum garnet (Nd:YAG) slab laser is proposed in this Letter. The laser is based on a stable-unstable hybrid cavity.

View Article and Find Full Text PDF