Background: Peritoneal metastasis is the most common metastasis pattern of gastric cancer. Patients with gastric cancer peritoneal metastasis (GCPM) have a poor prognosis and respond poorly to conventional treatments. Recently, immune checkpoint blockade (ICB) has demonstrated favourable efficacy in the treatment of GCPM.
View Article and Find Full Text PDFLncRNA plays a crucial role in cancer progression and targeting, but it has been difficult to identify the critical lncRNAs involved in colorectal cancer (CRC) progression. We identified FAM83H-AS1 as a tumor-promoting associated lncRNA using 21 pairs of stage IV CRC tissues and adjacent normal tissues. In vitro and in vivo experiments revealed that knockdown of FAM83H-AS1 in CRC cells inhibited tumor proliferation and metastasis, and vice versa.
View Article and Find Full Text PDFIn the realm of cancer therapeutics and resistance, kinases play a crucial role, particularly in gastric cancer (GC). Our study focused on platinum-based chemotherapy resistance in GC, revealing a significant reduction in homeodomain-interacting protein kinase 3 (HIPK3) expression in platinum-resistant tumors through meticulous analysis of transcriptome datasets. In vitro and in vivo experiments demonstrated that HIPK3 knockdown enhanced tumor proliferation and metastasis, while upregulation had the opposite effect.
View Article and Find Full Text PDFGastric and colorectal cancers are significant causes of human mortality. Conventionally, the diagnosis of gastrointestinal tumors has been accomplished through image-based techniques, including endoscopic and biopsy procedures coupled with tissue staining. Most of these methods are invasive.
View Article and Find Full Text PDFColorectal cancer (CRC) patients with liver metastases usually obtain less benefit from immunotherapy, and the underlying mechanisms remain understudied. Here, we identify that fibrinogen-like protein 1 (FGL1), secreted from cancer cells and hepatocytes, facilitates the progression of CRC in an intraportal injection model by reducing the infiltration of T cells. Mechanistically, tumor-associated macrophages (TAMs) activate NF-ĸB by secreting TNFα/IL-1β in the liver microenvironment and transcriptionally upregulate OTU deubiquitinase 1 (OTUD1) expression, which enhances FGL1 stability via deubiquitination.
View Article and Find Full Text PDFBackground: Predictive biomarkers for oesophageal squamous cell carcinoma (ESCC) immunotherapy are lacking, and immunotherapy resistance remains to be addressed. The role of long noncoding RNA (lncRNA) in ESCC immune escape and immunotherapy resistance remains to be elucidated.
Methods: The tumour-associated macrophage-upregulated lncRNAs and the exosomal lncRNAs highly expressed in ESCC immunotherapy nonresponders were identified by lncRNA sequencing and polymerase chain reaction assays.
Interleukin-1β (IL-1β) is a key protein in inflammation and contributes to tumor progression. However, the role of IL-1β in cancer is ambiguous or even contradictory. Here, we found that upon IL-1β stimulation, nicotinamide nucleotide transhydrogenase (NNT) in cancer cells is acetylated at lysine (K) 1042 (NNT K1042ac) and thereby induces the mitochondrial translocation of p300/CBP-associated factor (PCAF).
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2022
Cell misuse and cross-contamination can affect the accuracy of cell research results and result in wasted time, manpower and material resources. Thus, cell line identification is important and necessary. At present, the commonly used cell line identification methods need cell staining and culturing.
View Article and Find Full Text PDFDysregulated cholesterol metabolism is a hallmark of colorectal cancer (CRC). However, the usage of cholesterol-lowering agents seemed to have no benefit in CRC patients. In this study, we focused on the cholesterol-nuclear receptors (NRs) axis as a strategy.
View Article and Find Full Text PDFSecretion of TNFα by tumor-associated macrophages stimulates cancer cells to upregulate lncRNA MALR, which induces ILF3 liquid-liquid phase separation and activation of HIF1α signaling to promote cancer progression.
View Article and Find Full Text PDFMetastasis is the main cause of death for patients suffering gastric cancer. Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) are critical attributes of metastasis, both of which are regulated tightly by DNA methylation and Wnt/β-catenin signaling. Here, we studied the functions of DNA dioxygenase TET1 in regulating Wnt signaling and in gastric cancer metastasis.
View Article and Find Full Text PDFEsophageal squamous cell carcinoma (ESCC) is one of the most life- and health-threatening malignant diseases worldwide, especially in China. Long noncoding RNAs (lncRNAs) have emerged as important regulators of tumorigenesis and tumor progression. However, the roles and mechanisms of lncRNAs in ESCC require further exploration.
View Article and Find Full Text PDFMultiple primary tumor (MPT) is a special and rare cancer type, defined as more than two primary tumors presenting at the diagnosis in a single patient. The molecular characteristics and tumorigenesis of MPT remain unclear due to insufficient approaches. Here, we present MPTevol, a practical computational framework for comprehensively exploring the MPT from multiregion sequencing (MRS) experiments.
View Article and Find Full Text PDFThe genetic basis of colorectal cancer (CRC) and its clinical associations remain poorly understood due to limited samples or targeted genes in current studies. Here, we perform ultradeep whole-exome sequencing on 1015 patients with CRC as part of the ChangKang Project. We identify 46 high-confident significantly mutated genes, 8 of which mutate in 14.
View Article and Find Full Text PDFSignal Transduct Target Ther
February 2022
Metabolic enzymes have an indispensable role in metabolic reprogramming, and their aberrant expression or activity has been associated with chemosensitivity. Hence, targeting metabolic enzymes remains an attractive approach for treating tumors. However, the influence and regulation of cysteine desulfurase (NFS1), a rate-limiting enzyme in iron-sulfur (Fe-S) cluster biogenesis, in colorectal cancer (CRC) remain elusive.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNA) are involved in tumorigenesis and drug resistance. However, the roles and underlying mechanisms of lncRNAs in colorectal cancer are still unknown. In this work, through transcriptomic profiling analysis of 21 paired tumor and normal samples, we identified a novel colorectal cancer-related lncRNA, .
View Article and Find Full Text PDFBackground: Numerous reports on microRNAs have illustrated their role in tumor growth and metastasis. Recently, a new prognostic factor, miR-125b-2-3p, has been identified for predicting chemotherapeutic sensitivity in advanced colorectal cancer (CRC). However, the specific mechanisms and biological functions of miR-125b-2-3p in advanced CRC under chemotherapy have yet to be elucidated.
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2020
The acidic tumor microenvironment provides an energy source driving malignant tumor progression. Adaptation of cells to an acidic environment leads to the emergence of cancer stem cells. The expression of the vitamin D receptor (VDR) is closely related to the initiation and development of colorectal carcinoma (CRC), but its regulatory mechanism in CRC stem cells is still unclear.
View Article and Find Full Text PDFTumor cells often reprogram their metabolism for rapid proliferation. The roles of long noncoding RNAs (lncRNAs) in metabolism remodeling and the underlying mechanisms remain elusive. Through screening, we found that the lncRNA Actin Gamma 1 Pseudogene (AGPG) is required for increased glycolysis activity and cell proliferation in esophageal squamous cell carcinoma (ESCC).
View Article and Find Full Text PDFMethyltransferase-like 3 (METTL3), a major component of the N6-methyladenosine (m6A) methyltransferase complex, has been suggested to function as an oncogene in several cancers. However, its biological mechanism and the involved pathways in gastric cancer (GC) remain unknown. Here, we reported that frequent upregulation of METTL3 was responsible for the aberrant m6A levels in gastric carcinoma.
View Article and Find Full Text PDFGastrointestinal cancer causes countless deaths every year due to therapeutic resistance. However, whether metabolic alterations contribute to chemoresistance is not well understood. In this study, we report that fatty acid (FA) catabolism was activated in gastrointestinal cancer cells treated with oxaliplatin, which exhibited higher expression of the rate-limiting enzymes carnitine palmitoyltransferase 1B (CPT1B) and CPT2.
View Article and Find Full Text PDF