Small-molecule prodrug nanoassembly technology with a unique advantage in off-target toxicity reduction has been widely used for antitumor drug delivery. However, prodrug activation remains a rate-limiting step for exerting therapeutic actions, which requires to quickly reach the minimum valid concentrations of free drugs. Fortunately, we find that a natural compound (BL-193) selectively improves the chemotherapy sensitivity of breast cancer cells to podophyllotoxin (PPT) at ineffective dose concentrations.
View Article and Find Full Text PDFThe self-assembly prodrugs are usually consisted of drug modules, activation modules, and assembly modules. Keeping the balance between efficacy and safety by selecting suitable modules remains a challenge for developing prodrug nanoassemblies. This study designed four docetaxel (DTX) prodrugs using disulfide bonds as activation modules and different lengths of branched-chain fatty alcohols as assembly modules (C, C, C, and C).
View Article and Find Full Text PDFPhotothermal therapy, combined with chemotherapy, holds promising prospects for the therapeutic outcome of malignant tumors. However, the synergistic therapeutic effect suffers from low coloading capacity and inefficient synchronous tumor-targeting delivery of chemodrug and photothermal photosensitizers. Herein, we designed a versatile carrier-free nanoplatform to seek improvement for chemo-photothermal therapy.
View Article and Find Full Text PDFThe clinical application of cabazitaxel (CTX) is restricted by severe dose-related toxicity, failing to considering therapeutic efficacy and safety together. Self-assembled prodrugs promote new drug delivery paradigms as they can self-deliver and self-formulate. However, the current studies mainly focused on the use of straight chains to construct self-assembled prodrugs, and the role of branched chains in prodrug nanoassemblies remains to be clarified.
View Article and Find Full Text PDFJ Control Release
January 2022
The combination of chemotherapy with the immune checkpoint blockade (ICB) therapy is bringing a tremendous hope in the treatment of malignant tumors. However, the treatment efficacy of the existing chemo-immunotherapy is not satisfactory due to the high cost and immunogenicity of ICB antibodies, low response rate to ICB, off-target toxicity of therapeutic agents, and low drug co-delivery efficacy. Therefore, a high-efficient nanosystem combining the delivery of chemotherapeutics with small molecule ICB inhibitors may be promising for an efficient cancer therapy.
View Article and Find Full Text PDFIn treating eye diseases, topical administration on the ocular surface is the most convenient and acceptable route. However, the intraocular efficiency of non-invasive drug delivery systems is still considerably hampered by the eye's defense barriers. In this work, cell-penetrating peptide TAT-functionalized, flurbiprofen-loaded liposomes (TAT-FB-Lip) were designed to enable transcorneal drug delivery and prolong ocular surface retention.
View Article and Find Full Text PDFThe value of the clinical application of chemotherapeutic drugs is dependent on both systemic toxicity and treatment efficacy. Dose intensification and high tolerability suggest the potential for clinical cancer therapy. In this study, we developed a novel strategy for reconstructing a drug molecule into remote-loading liposomes.
View Article and Find Full Text PDFNanostructured lipid carriers (NLCs) are emerging as attractive drug carriers in transdermal drug delivery. The surface modification of NLCs with cell-penetrating peptides (CPPs) can enhance the skin permeation of drugs. The objective of the current study was to evaluate the ability of the cell-penetrating peptide (CPP) polyarginine to translocate NLCs loaded with lornoxicam (LN) into the skin layers and to evaluate its anti-inflammatory effect.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) shows a promising synergy with chemotherapy in the therapeutic outcome of malignant cancers. The minimal invasiveness and nonsystemic toxicity are appealing advantages of PDT, but combination with chemotherapy brings in the nonselective toxicity. We designed a polymeric nanoparticle system that contains both a chemotherapeutic agent and a photosensitizer to seek improvement for chemo-photodynamic therapy.
View Article and Find Full Text PDFThe development of versatile antitumor agents with tumor-imaging, targeting and therapeutic activity is promising for clinical cancer therapy. Prostate cancer is still the one of the leading threats to males. Current therapies have restricted clinical efficiency for patients with advanced and metastatic prostate cancer.
View Article and Find Full Text PDFProstate cancer (PCa) is the most frequent malignant cancer among men in the USA, leading to substantial morbidity and mortality, while the existing treatments have restricted therapeutic benefits for patients with hormone-refractory PCa (HRPC) and metastatic PCa. Recent studies show that advanced PCa exhibits an increase in the expression of monoamine oxidase A (MAOA) which is a mitochondria enzyme, and MAOA activity inhibition could restrict metastasis and extend mice survival in PCa xenografts. These findings suggest MAOA can be a potential target to treat PCa.
View Article and Find Full Text PDFProstate cancer (PCa) is the most prevalent cancer among men in the United States and remains the second-leading cause of cancer mortality in men. Paclitaxel (PTX) is the first line chemotherapy for PCa treatment, but its therapeutic efficacy is greatly restricted by the nonspecific distribution in vivo. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most PCa cells, and its expression level increases with cancer aggressiveness, while being present at low levels in normal cells.
View Article and Find Full Text PDFThe efficacy of traditional chemotherapy often suffers from rapid clearance and off-target toxicity. Drug delivery systems and controlled release are applied to improve the therapeutic efficiencies of small-molecule drugs. In this work, two novel oxidative/reductive (Ox/Re) -sensitive and one non-sensitive Paclitaxel (PTX) prodrugs were synthesized with a maleimide group, which rapidly conjugates with albumin in vivo.
View Article and Find Full Text PDFBackground: Ethosomes, a novel type of percutaneous drug delivery carrier with a lipid bilayer structure, penetrate the skin barrier due to their deformability and malleability, and presence of ethanol that fluidizes lipids in the skin. In order to further enhance the delivery of drugs through the skin, penetration enhancers are widely used.
Objective: The objective of this work was to develop an optimized formulation of lornoxicam ethosomal gels, investigate skin permeability with the addition of penetration enhancers, and evaluate the invivo pharmacodynamics of these formulations.
The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system.
View Article and Find Full Text PDFThe objective of this investigation was to develop solid lipid nanoparticles (SLNs) of penciclovir and evaluate the potential of SLNs as the carrier of penciclovir for topical delivery. Penciclovir-loaded SLNs were prepared by a double (W/O/W) emulsion technique. The SLNs presented spherical with the mean diameter of 254.
View Article and Find Full Text PDF