The challenge in China is to retain high yields while lowering greenhouse gas (GHG) emissions in the context of the increasing global and Chinese demand for rice yield. Better fertilizer management is a key factor that favors intensive rice systems toward more intensive, diverse, and sustainable development to obtain higher yield and environmental benefits. Thus, we used a data-intensive approach to estimate yield, fertilizer productivity (FP) and GHG emissions based on fertilizer and soil characteristics across major Chinese rice-producing regions.
View Article and Find Full Text PDFThe mechanization of rice production in China has been accompanied by a rapid reduction in agricultural labor forces and increase in machinery purchase subsidies; however, the comprehensive performance of several major mechanized production modes regarding output, environmental protection, and profit remains uncertain to the Chinese government and farmers alike. Here, a five-year (2015-2019) field experiment was conducted to analyze the performance of farmers' mechanized seedling transplanting (FMST), farmers' mechanized direct seeding (FMDS), and reduced-input direct seeding (RIDS) concerning grain yield, energy use, greenhouse gas emissions, and economic benefits. RIDS used an unmanned aerial vehicle for sowing, fertilizing, and spraying, while adopting no-tillage, bed-furrow irrigation technology.
View Article and Find Full Text PDF