Publications by authors named "Qingyuan Zhao"

Aqueous zinc metal batteries (AZMBs) are an energy storage system that is expected to replace traditional lithium batteries. However, the practical application of AZMBs is hampered by some inherent drawbacks. Herein, an amino acid additive with a screening property is introduced.

View Article and Find Full Text PDF

Most thermal barrier coating materials exhibit transparent/semi-transparent properties at higher temperatures, causing the surface heat flow to directly heat the substrate with infrared radiation, which significantly reduces the thermal barrier effectiveness. Herein, composite ceramic materials composed of GdFeO diffusely dispersed within the GdTaO are produced. Specifically, the 0.

View Article and Find Full Text PDF

Introduction: Differentiating hypertensive heart disease (HHD) from hypertrophic cardiomyopathy (HCM) is crucial yet challenging due to overlapping clinical and morphological features. Recent studies have explored the use of various cardiac magnetic resonance (CMR) parameters to distinguish between these conditions, but findings have remained inconclusive. This study aims to identify which CMR parameters effectively discriminate between HHD and HCM and to investigate their underlying pathophysiological mechanisms through a meta-analysis.

View Article and Find Full Text PDF

The increasing availability and scale of biobanks and "omic" datasets bring new horizons for understanding biological mechanisms. PathGPS is an exploratory data analysis tool to discover genetic architectures using Genome Wide Association Studies (GWAS) summary data. PathGPS is based on a linear structural equation model where traits are regulated by both genetic and environmental pathways.

View Article and Find Full Text PDF

Efficiently fabricating a cavity that can achieve strong interactions between terahertz waves and matter would allow researchers to exploit the intrinsic properties due to the long wavelength in the terahertz waveband. Here we show a terahertz detector embedded in a Tamm cavity with a record Q value of 1017 and a bandwidth of only 469 MHz for direct detection. The Tamm-cavity detector is formed by embedding a substrate with an NbN microbolometer detector between an Si/air distributed Bragg reflector (DBR) and a metal reflector.

View Article and Find Full Text PDF

Classical and quantum space-to-ground communications necessitate highly sensitive receivers capable of extracting information from modulated photons to extend the communication distance from near-earth orbits to deep space explorations. To achieve gigabit data rates while mitigating strong background noise photons and beam drift in a highly attenuated free-space channel, a comprehensive design of a multi-functional detector is indispensable. In this study, we present an innovative compact multi-pixel superconducting nanowire single-photon detector array that integrates near-unity detection efficiency (91.

View Article and Find Full Text PDF

Precisely acquiring the timing information of individual X-ray photons is important in both fundamental research and practical applications. The timing precision of commonly used X-ray single-photon detectors remains in the range of one hundred picoseconds to microseconds. In this work, we report on high-timing-precision detection of single X-ray photons through the fast transition to the normal state from the superconductive state of superconducting nanowires.

View Article and Find Full Text PDF

Scaling up superconducting nanowire single-photon detectors (SNSPDs) into a large array for imaging applications is the current pursuit. Although various readout architectures have been proposed, they cannot resolve multiple-photon detections (MPDs) currently, which limits the operation of the SNSPD arrays at high photon flux. In this study, we focused on the readout ambiguity of a superconducting nanowire single-photon imager applying time-of-flight multiplexing readout.

View Article and Find Full Text PDF

Background: Dexamethasone is a corticosteroid with powerful anti-inflammatory effects. This study aimed to explore whether combining intravenous and topical dexamethasone could improve postoperative pain, swelling, and function recovery after total knee arthroplasty (TKA).

Methods: In this prospective, double-blind, randomized controlled study, 90 patients undergoing primary unilateral TKA were randomized into a dexamethasone group, which received dexamethasone (10 mg) by periarticular infiltration during surgery, as well as intravenous dexamethasone (10 mg) before tourniquet release and at 12 h postoperatively; or a control group, which received equal volumes of isotonic saline instead of dexamethasone.

View Article and Find Full Text PDF

Many partial identification problems can be characterized by the optimal value of a function over a set where both the function and set need to be estimated by empirical data. Despite some progress for convex problems, statistical inference in this general setting remains to be developed. To address this, we derive an asymptotically valid confidence interval for the optimal value through an appropriate relaxation of the estimated set.

View Article and Find Full Text PDF

Adaptation to various altitudes and oxygen levels is a major aspect of vertebrate evolution. Hemoglobin is an erythrocyte protein belonging to the globin superfamily, and the α-, β-globin genes of jawed vertebrates encode tetrameric ((αβ) hemoglobin, which contributes to aerobic metabolism by delivering oxygen from the respiratory exchange surfaces into cells. However, there are various gaps in knowledge regarding hemoglobin gene evolution, including patterns in cartilaginous fish and the roles of gene conversion in various taxa.

View Article and Find Full Text PDF

The characterization and manipulation of polarization state at single photon level are of great importance in research fields such as quantum information processing and quantum key distribution, where photons are normally delivered using single mode optical fibers. To date, the demonstrated polarimetry measurement techniques based on a superconducting nanowire single photon detector (SNSPD) require the SNSPD to be either highly sensitive or highly insensitive to the photon's polarization state, therefore placing an unavoidable challenge on the SNSPD's design and fabrication processes. In this article, we present the development of an alternative polarimetry measurement technique, of which the stringent requirement on the SNSPD's polarization sensitivity is removed.

View Article and Find Full Text PDF

The role of dietary tannin in inflammatory bowel disease (IBD) is still not clear. Therefore, we aim to study the effect of TA in the progression of IBD. Dextran sulphate sodium (DSS)-induced model was used to mimic IBD.

View Article and Find Full Text PDF

The practical application of Na-superionic conductor structured materials is hindered by limited energy density and structure damage upon activating the third Na. We propose a bimetal substitution strategy with cheaper Fe and Ni elements for costive vanadium in the polyanion to improve both ionic and electronic conductivities, and a single two-phase reaction during Na intercalation/deintercalation and much reduced Na diffusion barrier are uncovered by ex-situ X-ray diffraction and density functional theory calculations. Thus, the obtained cathode, NaFeVNi(PO), shows excellent electrochemical performances including high specific capacity (102.

View Article and Find Full Text PDF

Superconducting nanowire single photon detectors (SNSPDs) have been extensively investigated due to their superior characteristics, including high system detection efficiency, low dark count rate and short recovery time. The polarization sensitivity introduced by the meandering-type superconductor nanowires is an intrinsic property of SNSPD, which is normally measured by sweeping hundreds of points on the Poincaré sphere to overcome the unknown birefringent problem of the SNSPD's delivery fiber. In this paper, we propose an alternative method to characterize the optical absorptance of SNSPDs, without sweeping hundreds of points on the Poincaré sphere.

View Article and Find Full Text PDF

Effect modification occurs when the effect of the treatment on an outcome varies according to the level of other covariates and often has important implications in decision-making. When there are tens or hundreds of covariates, it becomes necessary to use the observed data to select a simpler model for effect modification and then make valid statistical inference. We propose a two-stage procedure to solve this problem.

View Article and Find Full Text PDF

Butorphanol, a synthetic opioid, exerts analgesic and anti-inflammatory effects against pathogenic diseases. Butorphanol repressed malignant behaviors of tumor cells. In this study, the role of butorphanol in hepatocellular carcinoma was evaluated.

View Article and Find Full Text PDF

All cavefishes, living exclusively in caves across the globe, exhibit similar phenotypic traits, including the characteristic loss of eyes. To understand whether such phenotypic convergence shares similar genomic bases, here we investigated genome-wide evolutionary signatures of cavefish phenotypes by comparing whole-genome sequences of three pairs of cavefishes and their surface fish relatives. Notably, we newly sequenced and generated a whole-genome assembly of the Chinese cavefish Triplophysa rosa.

View Article and Find Full Text PDF

Controlling thermal transport is important for a range of devices and technologies, from phase change memories to next-generation electronics. This is especially true in nano-scale devices where thermal transport is altered by the influence of surfaces and changes in dimensionality. In superconducting nanowire single-photon detectors, the thermal boundary conductance between the nanowire and the substrate it is fabricated on influences all of the performance metrics that make these detectors attractive for applications.

View Article and Find Full Text PDF

Electrochemical energy storage has experienced unprecedented advancements in recent years and extensive discussions and reviews on the progress of multivalent metal-ion batteries have been made mainly from the aspect of electrode materials, but relatively little work comprehensively discusses and provides an outlook on the development of electrolytes in these systems. Under this circumstance, this Review will initially introduce different types of electrolytes in current multivalent metal-ion batteries and explain the basic ion conduction mechanisms, preparation methods, and pros and cons. On this basis, we will discuss in detail the research and development of electrolytes for multivalent metal-ion batteries in recent years, and finally, critical challenges and prospects for the application of electrolytes in multivalent metal-ion batteries will be put forward.

View Article and Find Full Text PDF

A superconducting nanowire single-photon imager (SNSPI) uses a time-multiplexing method to reduce the readout complexity. However, due to the serial connection, the nanowire should be uniform so that a common bias can set all segments of the nanowire to their maximum detection efficiency, which becomes more challenging as the scalability (i.e.

View Article and Find Full Text PDF

A high concentration of homocysteine (Hcy) has been recently reported to be closely associated with the development of stroke, which is related to the Hcy-induced blood-brain barrier (BBB) dysfunction. Butorphanol tartrate is a promising analgesic agent that targets the opiate receptor and shows promising protective effects on ischemia/reperfusion injury. The present research proposes to investigate the protective effect of butorphanol tartrate on Hcy-induced BBB disruption to explore the potential application of butorphanol tartrate in treating Hcy-induced stroke.

View Article and Find Full Text PDF

Mendelian randomization (MR) is a term that applies to the use of genetic variation to address causal questions about how modifiable exposures influence different outcomes. The principles of MR are based on Mendel's laws of inheritance and instrumental variable estimation methods, which enable the inference of causal effects in the presence of unobserved confounding. In this Primer, we outline the principles of MR, the instrumental variable conditions underlying MR estimation and some of the methods used for estimation.

View Article and Find Full Text PDF

A spectrum-resolved photon detector is crucial for cutting-edge quantum optics, astronomical observation, and spectroscopic sensing. However, such an ability is rarely obtained because a direct linear conversion from weak single-photon energy to a readable electrical signal above the noise level without causing an avalanche is challenging. Here, we overcame these difficulties by building a probabilistic energy-to-amplitude mapping in a tapered superconducting nanowire single-photon detector and combining a computational reconstruction to obtain equivalent spectral resolving capacity.

View Article and Find Full Text PDF