Objective: Peritoneal metastasis is difficult to diagnose using traditional imaging techniques. The main aim of the current study was to develop and validate a nomogram for effectively predicting the risk of peritoneal metastasis in colorectal cancer (PMCC).
Methods: A retrospective case-control study was conducted using clinical data from 1284 patients with colorectal cancer who underwent surgery at the First Affiliated Hospital of Guangxi Medical University from January 2010 to December 2015.
Poly(limonene carbonate) (PLC) has been highlighted as an attractive substitute to petroleum derived plastics, due to its utilisation of CO and bio-based limonene as feedstocks, offering an effective carbon capture and utilisation pathway. Our study investigates the techno-economic viability and environmental sustainability of a novel process to produce PLC from citrus waste derived limonene, coupled with an anaerobic digestion process to enable energy cogeneration and waste recovery maximisation. Computational process design was integrated with a life cycle assessment to identify the sustainability improvement opportunities.
View Article and Find Full Text PDFInvited for this month's cover picture is the group of Dr Miao Guo from Department of Chemical Engineering at the Imperial College London (UK). The cover picture shows modelling research on the co-polymerisation of waste-sourced limonene oxide with CO to produce poly(limonene carbonate), which offers a sustainable pathway to achieve carbon capture and utilisation. A computational approach to process design was integrated with sustainability evaluation to model this synthetic pathway and identify the environmental-damaging and performance-limiting steps for further improvement.
View Article and Find Full Text PDFWith the view of enhancing the functionality of label-free single molecule nanopore-based detection, we have designed and developed a highly robust, mechanically stable, integrated nanopipette-microfluidic device which combines the recognized advantages of microfluidic systems and the unique properties/advantages of nanopipettes. Unlike more typical planar solid-state nanopores, which have inherent geometrical constraints, nanopipettes can be easily positioned at any point within a microfluidic channel. This is highly advantageous, especially when taking into account fluid flow properties.
View Article and Find Full Text PDF