Publications by authors named "Qingye Sun"

Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on by conducting a greenhouse experiment.

View Article and Find Full Text PDF

The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.

View Article and Find Full Text PDF

Hitherto, research on iron(III)-reduction has mainly focused on bacteria rather than fungal communities. To acquire insight into fungi involved in iron(III) reduction, typical organic matters (containing cellulose, glucose, lactate, and acetate) and ferrihydrite were used as electron donors and acceptors, respectively, in the presence of antibiotics. After antibiotic addition, microbial iron(III) reduction was still detected at quite high rates.

View Article and Find Full Text PDF

Microbial driven coupled processes between denitrification and methane/sulfur metabolism play a very substantial role in accelerating nitrogen removal in river sediments. Until now, little is known about how element coupling processes alter nitrogen metabolism by the microbial functional communities. The primary objective of this research was to clarify the contributory role of microbial-mediated coupled processes in controlling denitrification.

View Article and Find Full Text PDF

Algae exert great impact on soil formation and biogeochemical cycling. However, there is no full understanding of the response of soil algal community structure to the seasonal fluctuations in temperature and moisture and changes of soil physicochemical properties across different forests. Here, based on 23S rRNA gene sequencing, we analyzed soil algal community structure in four different forest plantations in two seasons and examined soil physiochemical properties.

View Article and Find Full Text PDF

Soil cadmium (Cd) pollution presents a severe pollution burden to flora and fauna due to its non-degradability and transferability. The Cd in the soil is stressing the silkworm (Bombyx mori) out through a soil-mulberry-silkworm system. The gut microbiota of B.

View Article and Find Full Text PDF

The seasonal changes in dissolved organic matter (DOM), and its correlation with the release of internal nutrients during the annual cycle of cyanobacteria in the eutrophic Lake Chaohu, China, were investigated from four sampling periods between November 2020 and July 2021. The DOM fluorescence components were identified as protein-like C1, microbial humic-like C2, and terrestrial humic-like C3. The highest total fluorescence intensity (F) of DOM in sediments during the incubation stage is due to the decomposition and degradation of cyanobacteria remains.

View Article and Find Full Text PDF

Mining activities have increased the accumulation of heavy metals in farmland soil and in food crops. To identify the key soil properties influencing heavy metal bioavailability and accumulation in food crops, 81 crop samples and 81 corresponding agricultural soil samples were collected from rape, wheat, and paddy fields. Heavy metal (copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), iron (Fe), and manganese (Mn)) concentrations in soils and rape, wheat, rice grains were determined using inductively coupled plasma atomic emission spectroscopy, and soil physicochemical properties (pH, organic matter, total nitrogen, total phosphorus, available phosphorus, and available potassium (AK)) were analyzed.

View Article and Find Full Text PDF

Potentially toxic elements (PTEs) posed a major hazard to microbial community in river sediments, but the way how different kinds of microorganisms responses to elements pollution has not been clearly understood. The target of this research was to discriminate the apposite indicators for diagnosing elements pollution based on the sensitivity of microbial abundance, biodiversity, predicted metabolic functions to PTEs (Cu, Cd, Cr, Ni, Pb, Zn, As and Hg). Considering Huaihe River Basin as the main subject, sediment samples were gathered from 135 sites.

View Article and Find Full Text PDF

Crop straw mulching is an important organic supplement in sustainable agriculture; however, the effect of increased organic matter on the diversity of micropredators such as myxobacteria and the correlation between myxobacteria and microorganisms have been little explored. In the current investigation, high-throughput sequencing was performed to analyze the myxobacterial community composition in a wheat-corn rotation experimental field with 6-year straw mulching and fertilization treatments. The results reveal no significant influence of straw mulch application on myxobacterial α-diversity (P < 0.

View Article and Find Full Text PDF

Uranium extraction from natural seawater and wastewater are quintessential requirements to supply uninterrupted carbon-free nuclear energy and to prevent potential radiochemical and toxicological effects, respectively. Owing to the complexity and low-concentration uranium of these water samples, the design and synthesis of sorbent materials for uranium extraction with meaningful efficiencies remains a grand challenge. Herein, we reported a novel three-dimensional bifunctional network of hyperbranched poly(amidoxime-ethyleneimine) (PAO-h-PEI) using PEI as the skeleton material via cyanoethylation, crosslinking and then amidoximation.

View Article and Find Full Text PDF

Plasmid conjugation contributes greatly to the spread of antibiotic resistance genes (ARGs) in soils. However, the spread potential in the gut of soil fauna remains poorly studied, and little was known about the impact of host age on ARGs dissemination in the gut microbiota of soil animals. Here, the typical nematode-Caenorhabditis elegans was employed as the model soil animal, aiming to investigate transfer of broad-host-range IncP-1ɛ from Escherichia coli MG1655 to gut microbiota within 6 days under varied temperature gradients (15, 20 and 25 °C) using qPCR combined with plate screening.

View Article and Find Full Text PDF

Microbial assisted phytoremediation and reclamation are both potential contaminated soil remediation technologies, but little is known about the combined application of the two technologies on real contaminated soils. This study investigated the potential of Herbaspirillum sp. p5-19 (p5-19) assisted with alien soil improvement on improving stress tolerance and enhancing the accumulation of Mn, Cu, Zn, and Cd by Vetiveria zizanioides L.

View Article and Find Full Text PDF

Iohexol (IHO), as one of iodinated X-ray contrast, is often used as not only a chemical marker for tracking wastewater contamination in aquatic environment, but also an ideal glomerular filtration rate marker for explorating kidney disease. To these aims, it is important to establish reliable, fast, and cheap methods to detect IHO in environmental and biological samples. This work describes for the first time the development of a selective, sensitive and reliable colorimetric sensing assay for the fast determination of IHO in environmental and biological samples based on 3-aminophenylboronic acid (3-APBA) mediated aggregation of gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

Purpose: Nitrogen (N) and phosphorus (P) are the key elements leading to eutrophication, and it is important to jointly control N and P release from sediments into the water column.

Methods: Different mixed materials including P sorbent, natural organic carbon (C), and an oxidizing agent were applied in a 1-year pilot-scale experiment.

Results: The addition of iron-rich (IR) clay and Phoslock agent promoted the formation of iron bound P (Fe(OOH)~P) and calcium bound P (CaCO~P) in sediments, respectively.

View Article and Find Full Text PDF

Denitrification in river sediments plays a very important role in removing nitrogen in aquatic ecosystem. To gain insight into the key factors driving denitrification at large spatial scales, a total of 135 sediment samples were collected from Huaihe River and its branches located in the northern of Anhui province. Bacterial community composition and denitrifying functional genes (nirS, nirK, and nosZ) were measured by high-throughput sequencing and real-time PCR approaches.

View Article and Find Full Text PDF

Acid mine drainage (AMD) is one of an important pollution sources associated with mining activities and often inhibits plant growth. Plant growth promoting bacteria has received extensive attention for enhancing adaptability of plants growing in AMD polluted soils. The present study investigated the effect of plant growth promoting Bacillus spp.

View Article and Find Full Text PDF

Phragmites australis, which is widely distributed throughout the world, is often used in the phytoremediation of acid mine drainage (AMD) due to its various mechanisms for survival under extremely harsh conditions. To explore the different responses of different aerial organs of P. australis to stress, soil and plant samples were collected from the AMD-polluted area of the Tongling mining area.

View Article and Find Full Text PDF

Hydrochar, as a product of the hydrothermal carbonization of biomass, has good application prospects for the NH volatilization reduction in rice fields due to its rich pore structure and functional surface. In this study, hydrochar was applied as a soil conditioner to paddy soil. A soil column experiment was conducted to investigate the effect of hydrochar on NH volatilization throughout the growth period of rice.

View Article and Find Full Text PDF

The surface of leaf, also known as phyllosphere, harbors diverse microbial communities which include both beneficial microorganisms promoting plants growth and harmful microorganisms, such as plant pathogens and human pathogens. Several studies have investigated the interaction between plants and human pathogens, while few works have focused on the quantitative analysis of pathogenic bacteria. On the basis of real-time polymerase chain reaction (qPCR), this study aimed to evaluate the abundance of following genes: the nuc and pvl of Staphylococcus aureus, the lytA and psaA of Streptococcus pneumoniae, and the ttr and invA of Salmonella enterica in the phyllosphere of four landscape plants (Nandina domestica, Rhododendron pulchrum, Photinia serrulata, and Cinnamomum camphora) growing in two habitats.

View Article and Find Full Text PDF

Temperature and relative humidity are important conditions in paddy storage; however, their influence on microbial communities in stored paddy remains poorly understood. In this study, paddy was stored at different temperatures and relative humidity, and severe mildew was observed in samples stored at relative humidity of 97% and different temperatures (15, 28, and 37 °C) after 50 days. High-throughput 16S rRNA and ITS genes amplicon sequencing analyses showed that Proteobacteria, Firmicutes, and Ascomycota were the dominant phyla across the paddy samples.

View Article and Find Full Text PDF

The Nanfei River, located in Hefei City, Anhui Province, subjected to increased nutrient loads from point and/or non-point source. Little is known about the indicators indicating heterogeneity of surface sediments. We aimed to identify the suitable indicators that can reflect the sediment heterogeneity by analyzing the sensitivity of sediment physicochemical properties group, microbial communities and diversity indices group and C, N, S-functional genes group to seasonal and regional changes.

View Article and Find Full Text PDF

Studying the composition and structure of bacterial communities in sediments helps to understand the contribution of bacteria to environmental changes and the role of feedback in response to disturbances. However, seasonal changes in bacterial communities of river sediments with different pollution levels and sources have not been clear yet. In this study, we collected sediment samples during the dry season, wet season and level season from 40 sites with various pollution sources in three inflow rivers (Fengle-Hangbu River, Nanfei River and Zhegao River) of Chaohu Lake.

View Article and Find Full Text PDF

The phyllosphere provides appropriate conditions for colonization by microorganisms, including diazotrophic bacteria. However, a poor understanding of the effects of the atmospheric environment on the phyllospheric diazotrophic communities persists. We detected the biodiversity, abundance, and activity of nitrogen-fixing bacteria in the phyllospheres of two evergreen shrubs, Nerium indicum Mill.

View Article and Find Full Text PDF

Ecological restoration technologies applied to tailings can influence the associated bacterial communities. However, it is unknown if the shifts in these bacterial communities are caused by increased organic carbon. Glucose-induced respiration and high-throughput sequencing were used to assess the microbial activity and bacterial communities, respectively.

View Article and Find Full Text PDF