Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Nonoxidative dehydrogenation of propane is useful for the high selectivity to propylene but is suffering from the heavy coke deposition on the catalyst surface. Herein, we present a proof-of-concept application of a hole-hydrogen (H) couple on a metallic cobalt surface to decrease the deactivation rate. The coupled H atoms on the Cobalt (Co) surface, partially resulting from propane dehydrogenation, enabled the desorption of propylene to avoid deep hydrogenolysis and coke deposition and realize selective and durable propylene production, while conventional Co metal-based catalysts do not generate propylene.
View Article and Find Full Text PDF