A cheap iron-catalyzed C-C bond cleavage/thiolation and selenylation of cycloalkyl hydroperoxides are presented. This redox-neutral protocol provides efficient access to diverse distal keto-functionalized thioethers and selenium compounds. Remarkably, only some amounts of disulfides are required for this transformation.
View Article and Find Full Text PDFAn efficient copper-catalyzed radical ring-opening halogenation with HX (aq) is described. This protocol features redox-neutral conditions, green halogen sources, and a broad substrate scope, providing practical access to distally chlorinated, brominated and iodinated alkyl ketones and alkyl nitriles with moderate to good yields.
View Article and Find Full Text PDFDue to the strongly concentrated electromagnetic field and the ability to detect the below-bandgap photon energies, surface-plasmon-based photodetections have attracted considerable attention. However, the manipulation of plasmonic resonance is complicated with a high cost in fabrication; moreover, the performance of hot-electron photodetectors is generally unsatisfactorily low. Here, we demonstrated that a tunable absorption can be realized by using the nanohole patterned metal-spacer-metal (MSM) structure, which can be wafer-scale fabricated by the nanosphere lithography technology.
View Article and Find Full Text PDFHot-carrier photodetectors are drawing significant attention; nevertheless, current researches focus mostly on the hot-electron devices, which normally show low quantum efficiencies. In contrast, hot-hole photodetectors usually have lower barriers and can provide a wide spectral range of photodetection and an improved photoconversion efficiency. Here, we report a comparable study of the hot-electron and hot-hole photodetectors from both underlying physics and optoelectronic performance perspectives.
View Article and Find Full Text PDF