Publications by authors named "Qingxia Duan"

Article Synopsis
  • Ferroptosis is a type of cell death linked to diseases, caused by the buildup of lipid peroxides and influenced by iron levels.
  • Acrolein (ACR), a toxic byproduct of lipid peroxidation, needs effective detection methods to understand its role in ferroptosis and related diseases.
  • Researchers have developed a new fluorescent probe that accurately detects ACR during ferroptosis, showing its potential as a biomarker and its increased levels in experimental models, suggesting its importance in studying diseases related to ferroptosis.
View Article and Find Full Text PDF

Scientific evaluation of urban resilience will help to improve the ability of self-prevention and self-recovery when facing internal and external pressure. However, existing studies are on basis of the overall perspective of the urban resilience evaluation index system to measure urban resilience, often ignoring the coupling and coordination degree among indicators. Therefore, an empirical analysis is developed, which is used to measure the urban resilience of eight cities in the Yangtze River Delta urban agglomeration from 2010 to 2019 from the perspective of coupling coordination degree based on the urban resilience evaluation index system.

View Article and Find Full Text PDF

Peroxynitrite (ONOO) is widespread within living organisms and has been implicated in many physiological and pathological processes. Since ONOO is mainly produced in mitochondria, accurate detection of ONOO in mitochondria can help us understand its specific mechanism of action in the organism. Rather than single-wavelength emissive mitochondrial probes, ratiometric fluorescent probes with longer emission wavelength, large emission shift, and specific mitochondrial targeting properties are more likely to obtain a more accurate ONOO content in mitochondria.

View Article and Find Full Text PDF

A new rhodol-derived fluorescent probe 1 with picolinate as the recognition receptor was designed and simply synthesized using a one-step reaction. With the concentration of added Cu increases, it gradually turns pink, so the effect of naked eye detection can be achieved. The detection limit of probe 1 for Cu is 42 nM, and the linear detection range was 0-2 μM.

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNPs) have important application value in the research of population genetics, hereditary diseases, tumors, and drug development. Conventional methods for detecting SNPs are typically based on PCR or DNA sequencing, which is time-consuming, costly, and requires complex instrumentation. In this study, we present a duplex probe-directed recombinase amplification (duplex-PDRA) assay that can perform real-time detection of two SNPs (rs6983267 and rs1447295) in four reactions in two tubes at 39°C within 30 min.

View Article and Find Full Text PDF

Cervical cancer is primarily caused by persistent infection with high-risk human papillomavirus (HPV), and 70% of cases are associated with HPV16 and 18 infections. The objective of this study was to establish rapid, simple, and sensitive internally controlled recombinase-aided amplification (IC-RAA) assays for the detection of HPV16 and 18. The assays were performed at 39 ℃ and were completed within 30 min.

View Article and Find Full Text PDF

Mercury (Hg) is a heavy metal with high toxicity and easy migration; it can be enriched through the food chain, and cause serious threats to the natural environment and human health. So, the development of a method that can be used to detect mercury ions (Hg ) in the environment, in cells, and in organisms is very important. Here, a new 7-hydroxycoumarin-derived carbonothioate-based probe (CC-Hg) was designed and synthesized for detection of Hg .

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is a widespread blood-borne pathogen associated with the complication of liver cirrhosis and hepatocellular carcinoma, particularly in south-east Asian and African countries where HBV is highly endemic and the budget and resources are limited. Therefore, simple, rapid, and portable field detection methods are crucial to efficiently control HBV infection. In this study, using heat-treated DNA, we developed two-field applicable detection assays for HBV based on recombinase-aided amplification (RAA).

View Article and Find Full Text PDF

Objectives: Bordetella pertussis is a highly contagious respiratory agent and is the causative pathogen of pertussis, which primarily affects children. Current diagnostic techniques for this pathogen have a variety of limitations including a long culture time, low bacterial load, and lack of specificity.

Methods: This article reports the development of a one-tube nested quantitative real-time PCR assay using the locked nucleic acid (LNA) technique (LNA-OTN-q-PCR), targeting the BP485 gene and using a simple inexpensive extraction method.

View Article and Find Full Text PDF

Background: Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two main etiological agents of Hand, Foot and Mouth Disease (HFMD). Simple and rapid detection of EV71 and CA16 is critical in resource-limited settings.

Methods: Duplex real time reverse-transcription recombinase aided amplification (RT-RAA) assays incorporating competitive internal amplification controls (IAC) and visible RT-RAA assays combined with lateral flow strip (LFS) for detection of EV71 and CA16 were developed respectively.

View Article and Find Full Text PDF

Mercury ions as high toxic pollutants have received wide-spread attention because of their poisonousness, persistence and enrichment. To better understand the distribution of mercury species and supplement more detailed toxicological research, it is necessary to develop some methods for monitoring mercury ions with high sensitivity and selectivity. Therefore, a simple rhodol-based highly selective fluorescent probe, RH-Hg, has been developed for monitoring Hg with thiocarbamate as the recognition receptor.

View Article and Find Full Text PDF

Objectives: Pertussis is a highly transmissible acute respiratory infection caused by the bacterial pathogen Bordetella pertussis. The purpose of this study was to develop a rapid, simple and sensitive diagnostic test for detecting this pathogen.

Methods: Here we present a recombinase aided amplification (RAA) assay incorporating competitive internal amplification control (IAC) to detect Bordetella pertussis using the DNA obtained by boiling.

View Article and Find Full Text PDF

Exploring techniques for monitoring the intracellular signaling molecule carbon monoxide (CO) in biosystems is important to help understand its various cellular functions. Therefore, a simple long-wavelength colorimetric fluorescent probe LW-CO was designed for selectively and sensitively detecting intracellular CO in living systems. Probe LW-CO is ultrasensitive and can track CO levels in the range of 0-1 μM, with a detection limit of about 3.

View Article and Find Full Text PDF

It is very important to detect native hypochlorous acid (HOCl) in the complex biosystems owing to the important roles of HOCl in the immune defense and the pathogenesis of numerous diseases. In this paper, a new p-aminophenylether-based fluorescent probe PAPE-HA was developed for specific detection of HOCl. Probe PAPE-HA could implement the quantitative detection of HOCl ranging from 0 to 1 μM and the detection limit was obtained as low as 1.

View Article and Find Full Text PDF

In this work, taking full advantage of the intramolecular charge transfer (ICT) mechanism, a hydroxynaphthalimide-based ratiometric two-photon fluorescent probe RTP-PN was synthesized to detect ONOO. Probe RTP-PN could accurately detect ONOO in the range of 1.4 nM-1.

View Article and Find Full Text PDF

The detection of ionic mercury (Hg2+) is very important because it is a highly toxic environmental pollutant that could cause serious diseases and threaten human health. Herein, we designed a new carbonothioate-based far-red fluorescent probe, CBRB, with a seminaphthorhodafluor dye as the fluorophore for the detection of Hg2+. The CBRB probe by itself exhibited very weak fluorescence due to the enhanced photo-induced electron transfer (PET) effect and inhibited the intramolecular charge transfer (ICT) process caused by the carbonothioate moiety.

View Article and Find Full Text PDF

Liver cancer is a kind of high mortality cancer due to the difficulty of early diagnosis. And according to the reports, the concentration of reactive oxygen species (ROS) was higher in cancer cells than normal cells. Therefore, developing an effective fluorescent probe for hepatoma-selective imaging of hypochlorous acid (HOCl) which is one of the vital ROS is of great importance for understanding the role of HOCl in liver cancer pathogenesis.

View Article and Find Full Text PDF

The development of highly specific and ultrasensitive fluorescent probes for tracking basal mitochondrial hypochlorite is very important to unravel its diverse cellular functions in the mitochondria of living cells. In this paper, we have developed a water-soluble, mitochondria-targeted near-infrared fluorescent probe NB-OCl for selectively measuring OCl in the presence of higher concentration (500 μM) other biologically important substances. Surprisingly, the obtained results demonstrated that probe NB-OCl could sensitively determine OCl in the range of 0-200 pM with the detection limit of 10.

View Article and Find Full Text PDF

Developing some methods that can simply and effectively detect mercury ions (Hg) in the environment and biological systems are very important due to the problems of high toxicity and biological accumulation. Herein, we report a simple rhodol-derived colorimetric and fluorescent probe rhodol-Hg with a recognition receptor of carbonothioate for the specific determination of Hg. The color of probe rhodol-Hg solution changed remarkably from colorless to pink in the presence of Hg, thus rhodol-Hg could act as a "naked-eye" probe for Hg.

View Article and Find Full Text PDF

The development of techniques for detecting HOCl at the subcellular level is very important to elucidate its cellular functions. Due to its relatively low concentration, it is still a great challenge to specifically track the basal HOCl in normal cells. In this paper, based on the unique chlorination of HOCl by the initiation of chlorinium ions (Cl) in an acidic medium, we have developed a simple pH-mediated lysosome-targetable fluorescent probe Lyso-HOCl for the specific detection of HOCl over other bioactive molecules at higher concentration (500 μM).

View Article and Find Full Text PDF