This study employs single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing technologies (scATAC-seq) to perform joint sequencing on cells at various time points during the induction of adipose-derived stem cells (ADSCs) into astrocytes. We applied bioinformatics approaches to investigate the differentiation trajectories of ADSCs during their induced differentiation into astrocytes. Pseudotemporal analysis was used to infer differentiation trajectories.
View Article and Find Full Text PDFThe nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers.
View Article and Find Full Text PDFWe employed single-cell transcriptome sequencing to reveal the dynamic gene expression changes during the differentiation of adipose-derived stromal cells (ADSCs) into astrocytes. Single-cell RNA sequencing was conducted on cells from the ADSCs group and the induced groups at 2, 7, 14, and 21 days using the 10 × Chromium platform. Data underwent quality control and dimensionality reduction.
View Article and Find Full Text PDFAdipose-derived stromal cells (ADSCs) can be induced to differentiate into neurons, representing the most promising avenue for cell therapy. However, the molecular mechanism and genomic characteristics of the differentiation of ADSCs into neurons remain poorly understood. In this study, cells from the adult ADSCs group, induction 1h, 3h, 5h, 6h, and 8h groups were selected for single-cell RNA sequencing (scRNA-Seq).
View Article and Find Full Text PDFMesenchymal stem/stromal cells (MSCs), originating from the mesoderm, represent a multifunctional stem cell population capable of differentiating into diverse cell types and exhibiting a wide range of biological functions. Despite more than half a century of research, MSCs continue to be among the most extensively studied cell types in clinical research projects globally. However, their significant heterogeneity and phenotypic instability have significantly hindered their exploration and application.
View Article and Find Full Text PDFApoptosis is the primary cause of cell death in the differentiation of Adipose-derived stromal cells (ADSCs) into neurons. However, the relationship between endoplasmic reticulum stress (ERS) and death receptor-mediated apoptosis in ADSC-induced neuronal differentiation is not clear. ADSCs were isolated and induced to differentiate into neurons using β-mercaptoethanol.
View Article and Find Full Text PDFThe cellular heterogeneity and genetic features of stemness of adipose-derived stromal cells (ADSCs) remain unclear. Using single-cell RNA sequencing (scRNA-seq), we investigated the genomic features of the stemness gene in ADSCs with genetic variability. We cultured the ADSCs isolated from the fat waste of a healthy adult volunteers undergoing cosmetic plastic surgery to the third generation, used the BD Rhapsody platform to perform scRNA-seq, then used Monocle2 to analyze the growth and development trajectory of ADSCs, Cellular Trajectory Reconstruction Analysis Using Gene Counts and Expression (CytoTRACE) to evaluate the stemness gene characteristics in ADSCs clusters, and Beam to analyze the expression change characteristics of the main stemness related genes of ADSCs.
View Article and Find Full Text PDF