Publications by authors named "Qingwei Deng"

The glymphatic system is a relatively recently identified fluid exchange and transport system in the brain. Accumulating evidence indicates that glymphatic function is impaired not only in central nervous system disorders but also in systemic diseases. Systemic diseases can trigger the inflammatory responses in the central nervous system, occasionally leading to sustained inflammation and functional disturbance of the central nervous system.

View Article and Find Full Text PDF

Astrocyte swelling is implicated in various neurological disorders. However, whether astrocyte swelling contributes to neuropathic pain remains elusive. This study elucidates the pivotal role of the nuclear factor of activated T-cells 5 (NFAT5) emerges as a master regulator of astrocyte swelling in the spinal dorsal horn (SDH) during neuropathic pain.

View Article and Find Full Text PDF

Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes-rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia-reperfusion procedure, although the classification corresponding to different effects remains controversial.

View Article and Find Full Text PDF

Pyroptosis is one special type of lytic programmed cell death, featured in cell swelling, rupture, secretion of cell contents and remarkable proinflammation effect. In the process of pyroptosis, danger signalling and cellular events are detected by inflammasome, activating caspases and cleaving Gasdermin D (GSDMD), along with the secretion of IL-18 and IL-1β. Pyroptosis can be divided into canonical pathway and non-canonical pathway, and NLRP3 inflammasome is the most important initiator.

View Article and Find Full Text PDF

Background: Myostatin antagonists are being developed as therapies for Duchenne muscular dystrophy due to their strong hypertrophic effects on skeletal muscle. Engineered follistatin has the potential to combine the hypertrophy of myostatin antagonism with the anti-inflammatory and anti-fibrotic effects of activin A antagonism.

Methods: Engineered follistatin was administered to C57BL/6 mice for 4 weeks, and muscle mass and myofiber size was measured.

View Article and Find Full Text PDF

Follistatin (FS) is an important regulatory protein, a natural antagonist for transforming growth factor-β family members activin and myostatin. The diverse biologic roles of the activin and myostatin signaling pathways make FS a promising therapeutic target for treating human diseases exhibiting inflammation, fibrosis, and muscle disorders, such as Duchenne muscular dystrophy. However, rapid heparin-mediated hepatic clearance of FS limits its therapeutic potential.

View Article and Find Full Text PDF

Pyramidal neurons of the electrosensory lateral line lobe (ELL) of Apteronotus leptorhynchus express Kv3-type voltage-gated potassium channels that give rise to high-threshold currents at the somatic and dendritic levels. Two members of the Kv3 channel family, AptKv3.1 and AptKv3.

View Article and Find Full Text PDF