Publications by authors named "Qinguo Fan"

The demand for self-powered, flexible, and wearable electronic devices has been increasing in recent years for physiological and biomedical applications in real-time detection due to their higher flexibility and stretchability. This work fabricated a highly sensitive, self-powered wearable microdevice with Poly-Vinylidene Fluoride-Tetra Fluoroethylene (PVDF-TrFE) nano-fibers using an electrospinning technique. The dielectric response of the polymer was improved by incorporating the reduced-graphene-oxide (rGO) multi-walled carbon nano-tubes (MWCNTs) through doping.

View Article and Find Full Text PDF

Photoinduced self-crosslinking technology is a great facilitator of 3D bioprinting of silk fibroin (SF) by allowing rapid solidification of a deliberately formulated SF-based photocrosslinkable bioink. An SF-based, photocrosslinked hydrogel was fabricated with tyramine-modified sodium carboxymethyl cellulose (CMC-Na) as a co-crosslinkable constituent and Ru(bpy)Cl (Ru(II)) and potassium persulfate (KPS) as blue light photoinitiators. Photorheological studies demonstrated that the photocrosslinking and viscoelasticity of the composite could be tuned by varying the relative content of the two constituents.

View Article and Find Full Text PDF

Over the past years, photonic crystals (PCs) with a periodically ordered nanostructure have attracted great attention due to their potential as advanced optical materials for structural coloration of textiles. However, the weak structural stability of PCs on flexible textile substrates makes them vulnerable to strong external forces, hampering their large-scale application. In this work, a waterborne polyurethane (wPU) is chosen for enhancing the structural stability of PCs.

View Article and Find Full Text PDF

Blue light induced photopolymerization and photo-cross-linking kinetics of acrylamide (AM), with camphorquinone/diphenyl iodonium hexafluorophosphate (CQ/DPI) as photoinitiators, were investigated. The effects of a number of parameters, including mass fraction of CQ, DPI, and AM (, , and ) and light intensity (), on photopolymerization efficiency and photogelation process were systematically studied by photo-differential scanning calorimetry (DSC) and photo-rheometry. Photo-DSC indicated that the maximum photopolymerization rate () was proportional to , , , and , while Photo-Rheometry showed linear relationships between gel time and and , respectively, and power law relationships between and and , respectively.

View Article and Find Full Text PDF

Patterned structural color photonic crystals (PCs) based on periodic photonic nanostructures have attracted great interest in developing high-performance sensors and other smart optical materials as well as tunable structurally colored fashion textiles. However, previously reported patterned PCs with both high color saturation and tough mechanical strength were difficult to achieve, which restricts their practical applications. Herein, arbitrarily patterned silica/polyurethane acrylate (SiO/PUA) inverse opal photonic crystals (IOPCs) with high color saturation and tough mechanical strength were innovatively designed and fabricated by writing with photopolymerizable PUA "ink" on a self-assembled hollow SiO PC template.

View Article and Find Full Text PDF

Amorphous photonic structures with non-iridescent and highly-stable structural color were fabricated via a simple one-step spray-coating technique. With this strategy, the obtained films on textile substrates presented short-ordered and amorphous photonic structures (APSs) similar to the amorphous nanostructures of avian feathers. The structural color presented the same hue when viewed at different angles and could be well controlled by varying the diameters of the SiO₂ nanospheres.

View Article and Find Full Text PDF

We fabricated electrically conductive textiles via vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) layers on cotton, cotton/poly(ethylene terephthalate) (PET), cotton/Lycra, and PET fabrics. We then measured the electrical resistivity values of such PEDOT-coated textiles and analyzed the effect of water treatment on the electrical resistivity. Additionally, we tested the change in the electrical resistance of the conductive textiles under cyclic stretching and relaxation.

View Article and Find Full Text PDF

The batch dyeing of fiber materials such as staple fibers and flock is usually carried out by exhaustion methods. However, the dyeing of flock fibers, either nylon, PET or acetate, with acid or disperse dyes is not 100% efficient in terms of dye utilization. Therefore, the remaining dyes in the spent dye bath are generally not reused, and are usually discharged with minimum treatment, together with the dyeing chemicals into the sewage wastewater system causing environmental pollution.

View Article and Find Full Text PDF