Immunotherapy is showing good potential for colorectal cancer therapy, however, low responsive rates and severe immune-related drug side effects still hamper its therapeutic effectiveness. Herein, a highly stable cerasomal nano-modulator (DMC@P-Cs) with ultrasound (US)-controlled drug delivery capability for selective sonodynamic-immunotherapy is fabricated. DMC@P-Cs' lipid bilayer is self-assembled from cerasome-forming lipid (CFL), pyrophaeophorbid conjugated lipid (PL), and phospholipids containing unsaturated chemical bonds (DOPC), resulting in US-responsive lipid shell.
View Article and Find Full Text PDFImmune checkpoint blockade (ICB) therapy still suffers from insufficient immune response and adverse effect of ICB antibodies. Chemodynamic therapy (CDT) has been demonstrated to be an effective way to synergize with ICB therapy. However, a low generation rate of reactive oxygen species and poor tumor penetration of CDT platforms still decline the immune effects.
View Article and Find Full Text PDFMater Today Bio
February 2024
Immunotherapy as a milestone in cancer treatment has made great strides in the past decade, but it is still limited by low immune response rates and immune-related adverse events. Utilizing bioeffects of ultrasound to enhance tumor immunotherapy has attracted more and more attention, including sonothermal, sonomechanical, sonodynamic and sonopiezoelectric immunotherapy. Moreover, the emergence of nanomaterials has further improved the efficacy of ultrasound mediated immunotherapy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
Conventional NO gas generation based on l-arginine (l-Arg) is usually dependent on HO and O, both of which are very limited within the tumor microenvironment, thus greatly limiting l-Arg's therapeutic effect. Herein, a novel nanoplatform for efficiently triggering NO production based on ultrasound-induced piezocatalysis was developed, which was fabricated by coating amphiphilic poly-l-arginine (DSPE-PEG-Arg, DPA) on the piezoelectric material of barium titanate (BTO). The resulting BTO@DPA nanoparticles can efficiently generate HO, O, and O via ultrasound-induced piezocatalysis based on BTO and oxidize the surface arginine to produce NO, which can even further interact with the reactive oxygen species (ROS) to produce more reactive peroxynitrite, thus inducing serious tumor cell apoptosis both in hypoxia and normoxia.
View Article and Find Full Text PDFNanozymes have attracted extensive research interest due to their ideal enzymatic catalytic performance; however, uncontrollable activities and nonspecific accumulation limit their further clinical application. To overcome these obstacles, we proposed synthesized nanozyme, and realized the concept through an intelligent nanosystem (ISSzyme) based on Prussian blue (PB) precursor. PB nanozyme was synthesized at the tumor sites through the interaction of ISSzyme with glutathione, which was demonstrated by comparing with conventional PB nanozyme.
View Article and Find Full Text PDFTumor immunotherapy based on immune checkpoint blockade (ICB) still suffers from low host response rate and non-specific distribution of immune checkpoint inhibitors, greatly compromising the therapeutic efficiency. Herein, cellular membrane stably expressing matrix metallopeptidase 2 (MMP2)-activated PD-L1 blockades is engineered to coat ultrasmall barium titanate (BTO) nanoparticle for overcoming the immunosuppressive microenvironment of tumors. The resulting M@BTO NPs can significantly promote the BTO's tumor accumulation, while the masking domains on membrane PD-L1 antibodies are cleaved when exposure to MMP2 highly expressed in tumor.
View Article and Find Full Text PDFNitric oxide (NO) is drawing widespread attention in treating pancreatic ductal adenocarcinoma (PDAC) as a safe and therapeutically efficient technique through modulating the dense fibrotic stroma in the tumor microenvironment to enhance drug penetration. Considerable NO nanogenerators and NO releasing molecules have been developed to shield the systemic toxicity caused by free diffusion of NO gas. However, on-demand controlled release of NO and chemotherapy drugs at tumor sites remains a problem limited by the complex and dynamic tumor microenvironment.
View Article and Find Full Text PDFJ Nanobiotechnology
November 2022
Tumor phototheranostics holds a great promise on account of its high spatiotemporal resolution, tumor-specificity, and noninvasiveness. However, physical limitation of light penetration and "always on" properties of conventional photothermal-conversion agents usually cause difficulty in accurate diagnosis and completely elimination of tumor. Meanwhile, nanozymes mediated Fenton reactions can well utilize the tumor microenvironment (TME) to generate hydroxyl radicals for chemodynamic therapy (CDT), but limited by the concentration of HO in TME and the delivery efficiency of nanozymes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2022
The immune checkpoint blockade (ICB) therapy based on monoclonal antibodies still suffers from a lower immune response rate and severe immune-related side effects, which greatly compromise its therapeutic benefits. Herein, ultrasound (US) microbubbles (MBs) that locally delivered the camptothecin-floxuridine (CF) drug combination and anti-PD-L1 blocking antibody (αPD-L1) to tumors were developed to improve ICB therapy. The resulting αPCF MBs exhibited good stability, allowing their use as US imaging contrast agents to trace the drug delivery .
View Article and Find Full Text PDFAs a traditional treatment for papillary thyroid cancer (PTC), surgical resection of diseased tissues often brings lots of inconveniences to patients, and the tumor recurrence and metastasis are difficult to avoid. Herein, we developed a gene and photothermal combined therapy nanosystem based on a polypyrrole (Ppy)-poly(ethylene imine)-siILK nanocomplex (PPR) to achieve minimally invasive ablation and lymphatic metastasis inhibition in PTC simultaneously. In this system, gelatin-stabilized Ppy mainly acted as a photothermal- and photoacoustic (PA)-responsive nanomaterial and contributed to its well-behaved photosensitivity in the near-infrared region.
View Article and Find Full Text PDFThe abundant desmoplastic stroma and the lack of sufficient targets on pancreatic cancer cells render poor drug penetration and cellular uptake, which significantly compromise the chemotherapy efficacy. Herein, we reported a three-step cascade delivery strategy for selective delivery of paclitaxel (PTX) to achieve a targeted therapy for pancreatic cancer. cRGD and cCLT1 peptides, which could target the integrin and fibronectin, respectively, overexpressed in pancreatic cancer cells and stroma, were decorated on PTX-loaded microbubbles, resulting in the formation of dual-targeting PTX-RCMBs.
View Article and Find Full Text PDFTrastuzumab combined with chemotherapy is the first-line treatment for advanced HER2-positive gastric cancer, but it still suffers from limited therapeutic efficiency and serious side effects, which are usually due to the poor delivery efficiency and the drug resistance of tumor cells to the chemotherapeutic drugs. Herein, a type of ultrasound microbubble for simultaneous delivery of sonosensitizers and therapeutic antibodies to achieve targeting combination of sonodynamic therapy and antibody therapy of HER2-positive gastric cancer was constructed from pyropheophorbide-lipid followed by trastuzumab conjugation (TP MBs). and studies showed that TP MBs had good biological safety, and their delivery can be monitored by ultrasound/fluorescence bimodal imaging.
View Article and Find Full Text PDFHypoxia in a solid tumor microenvironment (TME) can lead to the overexpression of hypoxia-inducible factor-1α (HIF-1α), which correlates to tumor metastasis. Reactive oxygen species (ROS) induced tumor cell apoptosis is becoming a promising method in tumor treatment. Currently, the ROS generating systems, e.
View Article and Find Full Text PDFWith its high efficiency for site-specific genome editing and easy manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 (CAS9) system has become the most widely used gene editing technology in biomedical research. In addition, significant progress has been made for the clinical development of CRISPR/CAS9 based gene therapies of human diseases, several of which are entering clinical trials. Here we report that CAS9 protein can function as a genome mutator independent of any exogenous guide RNA (gRNA) in human cells, promoting genomic DNA double-stranded break (DSB) damage and genomic instability.
View Article and Find Full Text PDFThe metabolic switch from oxidative phosphorylation to glycolysis is required for tumorigenesis in order to provide cancer cells with energy and substrates of biosynthesis. Therefore, it is important to elucidate mechanisms controlling the cancer metabolic switch. MTR4 is a RNA helicase associated with a nuclear exosome that plays key roles in RNA processing and surveillance.
View Article and Find Full Text PDFPurpose: Micheliolide (MCL) is an effector compound of the flower which has been traditionally used to treat inflammation and cancer patients in oriental medicine. MCL has killing effects on several cancer and immune cells by modulating apoptosis, cell cycle, and metabolism. However, the detail of the mechanisms of anti-cancer activity remains to be elucidated and the effect on liver cancer cells is unknown.
View Article and Find Full Text PDFThe tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA.
View Article and Find Full Text PDFObjective: The NOD/SCID/IL2Rγ (NSG) mouse strain is the most widely used immunodeficient strain for xenograft transplantation. However, the existing SCID mutation is a spontaneous mutation of the gene, which leads to leaky T cell developmental block and difficulty in genotyping. It is therefore important to develop a new strain of NSG mice with targeted disruption of and genes.
View Article and Find Full Text PDF