Herein, ultraviolet B (UVB) persistent luminescence phosphors containing SrAlO: Ce, Sc nanoparticles were reported. Thermoluminescence (TL) spectrum analysis reveals that the shallow trap induced by Sc co-doping plays an important role in photoluminescence persistent luminescence (PersL) development, while the deep trap dominates the generation of optical stimulated luminescence (OSL). Owing the appearance of deep trap, the OSL is observed under light (700 nm - 900 nm) excitation.
View Article and Find Full Text PDFPrefoldins (PFDs) are ubiquitous co-chaperone proteins that originated in archaea during evolution and are present in all eukaryotes, including yeast, mammals, and plants. Typically, prefoldin subunits form hexameric PFD complex (PFDc) that, together with class II chaperonins, mediate the folding of nascent proteins, such as actin and tubulin. In addition to functioning as a co-chaperone in cytoplasm, prefoldin subunits are also localized in the nucleus, which is essential for transcription and post-transcription regulation.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) have emerged as crucial regulators across diverse biological processes and diseases. While high-throughput sequencing has enabled lncRNA discovery, functional characterization remains limited. The EVLncRNAs database is the first and exclusive repository for all experimentally validated functional lncRNAs from various species.
View Article and Find Full Text PDFIn eukaryotes, dynamic chromatin states are closely related to changes in gene expression. Epigenetic modifications help plants adapt to their ever-changing environment by modulating gene expression via covalent modification at specific sites on DNA or histones. Sugars provide energy, but also function as signaling molecules to control plant growth and development.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play a vital role in a variety of biological functions in plant growth and development. In this study, we provided an overview of the molecular mechanisms of lncRNAs in interacting with other biomolecules with an emphasis on those lncRNAs validated only by low-throughput experiments. LncRNAs function through playing multiple roles, including sponger for sequestering RNA or DNA, guider or decoy for recruiting or hijacking transcription factors or peptides, and scaffold for binding with chromatin modification complexes, as well as precursor of microRNAs or small interfering RNAs.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play important functional roles in many diverse biological processes. However, not all expressed lncRNAs are functional. Thus, it is necessary to manually collect all experimentally validated functional lncRNAs (EVlncRNA) with their sequences, structures, and functions annotated in a central database.
View Article and Find Full Text PDFVegetative (juvenile-to-adult) and flowering (vegetative-to-reproductive) phase changes are crucial in the life cycle of higher plants. MicroRNA156 (miR156) and its target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are master regulators that determine vegetative phase changes. The miR156 level gradually declines as a plant ages and its expression is rapidly repressed by sugar.
View Article and Find Full Text PDFThe greening of etiolated seedlings is crucial for the growth and survival of plants. After reaching the soil surface and sunlight, etiolated seedlings integrate numerous environmental signals and internal cues to control the initiation and rate of greening thus to improve their survival and adaption. However, the underlying regulatory mechanisms by which light and phytohormones, such as abscisic acid (ABA), coordinately regulate greening of the etiolated seedlings is still unknown.
View Article and Find Full Text PDFLeaf senescence is tightly regulated by numerous internal cues and external environmental signals. The process of leaf senescence is promoted by a low ratio of red to far-red (R:FR) light, FR light, or extended darkness and is repressed by a high ratio of R:FR light or R light. However, the precise regulatory mechanisms by which plants assess external light signals and their internal cues to initiate and control the process of leaf senescence remain largely unknown.
View Article and Find Full Text PDFSugars provide a source of energy; they also function as signaling molecules that regulate gene expression, affect metabolism, and alter growth in plants. Rapid responses to sugar signaling and metabolism are essential for optimal growth and fitness, but the regulatory mechanisms underlying these are largely unknown. In this study, we found that the rapid induction of sugar responses in Arabidopsis () requires the W-box cis-elements in the promoter region of , a well-studied sugar response marker gene.
View Article and Find Full Text PDF