Publications by authors named "Qingshen Gao"

Heritable connective tissue diseases are a highly heterogeneous family of over 200 disorders that affect the extracellular matrix. While the genetic basis of several disorders is established, the etiology has not been discovered for a large portion of patients, likely due to rare yet undiscovered disease genes. By performing trio-exome sequencing of a 55-year-old male proband presenting with multiple symptoms indicative of a connective disorder, we identified a heterozygous missense alteration in exon 1 of the Elastin Microfibril Interfacer 1 (EMILIN1) gene, c.

View Article and Find Full Text PDF

Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.

View Article and Find Full Text PDF

Centrobin is a daughter centriole protein that is essential for centrosome duplication. However, the molecular mechanism by which centrobin functions during centriole duplication remains undefined. In this study, we show that centrobin interacts with tubulin directly, and centrobin-tubulin interaction is pivotal for the function of centrobin during centriole duplication.

View Article and Find Full Text PDF

Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase-anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles.

View Article and Find Full Text PDF

The oncogene v-akt was isolated from a retrovirus that induced murine thymic lymphomas. Transgenic mice expressing a constitutively activated form of the cellular homologue Akt2 specifically in immature T cells develop spontaneous thymic lymphomas. We hypothesized that tumors from these mice might exhibit oncogenic chromosomal rearrangements that cooperate with activated Akt2 in lymphomagenesis.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases, is overexpressed in as many as 60% cases of breast and other cancers. EGFR overexpression is a characteristic of highly aggressive molecular subtypes of breast cancer with basal-like and BRCA1 mutant phenotypes distinct from ErbB2-overexpressing breast cancers. Yet, EGFR is substantially weaker compared with ErbB2 in promoting the oncogenic transformation of nontumorigenic human mammary epithelial cells (human MEC), suggesting a role for cooperating oncogenes.

View Article and Find Full Text PDF

Members of the evolutionarily conserved Mastermind (MAM) protein family, including the three related mammalian Mastermind-like (MAML) proteins MAML1-3, function as crucial coactivators of Notch-mediated transcriptional activation. Given the recent evidence of cross-talk between the p53 and Notch signal transduction pathways, we have investigated whether MAML1 may also be a transcriptional coactivator of p53. Indeed, we show here that MAML1 is able to interact with p53.

View Article and Find Full Text PDF

The p53 tumor suppressor protein functions as a critical component of genotoxic stress response by regulating the expression of effector gene products that control the fate of a cell following DNA damage. Unstressed cells maintain p53 at low levels through regulated degradation, and p53 levels and activity are rapidly elevated upon genotoxic stress. Biochemical mechanisms that control the levels and activity of p53 are therefore of great interest.

View Article and Find Full Text PDF

Background: The four highly homologous human EHD proteins (EHD1-4) form a distinct subfamily of the Eps15 homology domain-containing protein family and are thought to regulate endocytic recycling. Certain members of this family have been studied in different cellular contexts; however, a lack of concurrent analyses of all four proteins has impeded an appreciation of their redundant versus distinct functions.

Results: Here, we analyzed the four EHD proteins both in mammalian cells and in a cross-species complementation assay using a C.

View Article and Find Full Text PDF

Direct gene transfer into neurons, using a virus vector, has been used to study neuronal physiology and learning, and has potential for supporting gene therapy treatments for specific neurological diseases. Many of these applications require high-level, long-term recombinant gene expression, in forebrain neurons. We previously showed that addition of upstream sequences from the rat tyrosine hydroxylase (TH) promoter to a neurofilament heavy gene (NF-H) promoter supports long-term expression in forebrain neurons, from helper virus-free Herpes Simplex Virus (HSV-1) vectors.

View Article and Find Full Text PDF

Biochemical mechanisms that control the levels and function of key tumor suppressor proteins are of great interest as their alterations can lead to oncogenic transformation. Here, we identify the human orthologue of Drosophila melanogaster ecdysoneless (hEcd) as a novel p53-interacting protein. Overexpression of hEcd increases the levels of p53 and enhances p53 target gene transcription whereas hEcd knockdown has the opposite effects on p53 levels and target gene expression.

View Article and Find Full Text PDF

Direct gene transfer into neurons in the brain via a virus vector system has potential for both examining neuronal physiology and for developing gene therapy treatments for neurological diseases. Many of these applications require precise control of the levels of recombinant gene expression. The preferred method for controlling the levels of expression is by use of an inducible promoter system, and the tetracycline (tet)-inducible promoter system is the preferred system.

View Article and Find Full Text PDF

In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle. Centrosomes play a pivotal role in orchestrating the formation of the bipolar spindle during mitosis.

View Article and Find Full Text PDF

Germ line mutations in BRCA2 gene predispose women to early-onset familial breast and ovarian cancer. BRCA2 is a protein of multiple functions. In addition to its role in DNA double-strand break repair, BRCA2 also plays a role in stabilization of stalled DNA replication forks, cytokinesis, transcription regulation, mammalian gametogenesis, centrosome duplication, and suppression of cell proliferation.

View Article and Find Full Text PDF

We have recently identified the hADA3 protein, the human homologue of yeast transcriptional coactivator yADA3, as a novel HPV16 E6 target. Using ectopic expression approaches, we further demonstrated that hADA3 directly binds to the 9-cis retinoic acid receptors alpha and beta, and functions as a coactivator for retinoid receptor-mediated transcriptional activation. Here, we examined the role of endogenous hADA3 as a coactivator for estrogen receptor (ER), an important member of the nuclear hormone receptor superfamily.

View Article and Find Full Text PDF

We have recently identified E6TP1 (E6-targeted protein 1) as a novel high-risk human papillomavirus type 16 (HPV16) E6-binding protein. Importantly, mutational analysis of E6 revealed a strong correlation between the transforming activity and its abilities to bind and target E6TP1 for ubiquitin-mediated degradation. As a region within E6TP1 has high homology with GAP domains of known and putative Rap GTPase-activating proteins (GAPs), these results raised the possibility that HPV E6 may alter the Rap small-G-protein signaling pathway.

View Article and Find Full Text PDF

The expression of human papillomavirus (HPV) E6 oncoprotein is causally linked to high-risk HPV-associated human cancers. We have recently isolated hADA3, the human homologue of yeast transcriptional co-activator yADA3, as a novel E6 target. Human ADA3 binds to the high-risk (cancer-associated) but not the low-risk HPV E6 proteins and to immortalization-competent but not to immortalization-defective HPV16 E6 mutants, suggesting a role for the perturbation of hADA3 function in E6-mediated oncogenesis.

View Article and Find Full Text PDF

High-risk human papillomaviruses (HPVs) are associated with carcinomas of the cervix and other genital tumors. The HPV oncoprotein E6 is essential for oncogenic transformation. We identify here hADA3, human homologue of the yeast transcriptional coactivator yADA3, as a novel E6-interacting protein and a target of E6-induced degradation.

View Article and Find Full Text PDF

High-risk human papilloma viruses are known to be associated with cervical cancers. We have reported previously that the high-risk human papillomavirus (HPV) E6 oncoprotein interacts with E6TP1, a novel Rap GTPase-activating protein (RapGAP). Similar to p53 tumor suppressor protein, the high-risk HPV E6 oncoproteins target E6TP1 for degradation.

View Article and Find Full Text PDF