Anelastic materials exhibit gradual full recovery of deformation once a load is removed, leading to dissipation of internal mechanical energy. As a consequence, anelastic materials are being investigated for mechanical damping applications. At the macroscopic scale, however, anelasticity is usually very small or negligible, especially in single-crystalline materials.
View Article and Find Full Text PDFThere has been relatively little study on time-dependent mechanical properties of nanowires, in spite of their importance for the design, fabrication and operation of nanoscale devices. Here we report a dislocation-mediated, time-dependent and fully reversible plastic behaviour in penta-twinned silver nanowires. In situ tensile experiments inside scanning and transmission electron microscopes show that penta-twinned silver nanowires undergo stress relaxation on loading and complete plastic strain recovery on unloading, while the same experiments on single-crystalline silver nanowires do not exhibit such a behaviour.
View Article and Find Full Text PDFThis paper reports quantitative mechanical characterization of silicon carbide (SiC) nanowires (NWs) via in situ tensile tests inside scanning electron microscopy using a microelectromechanical system. The NWs are synthesized using the vapor-liquid-solid process with growth direction of ⟨111⟩. They consist of three types of structures, pure face-centered cubic (3C) structure, 3C structure with an inclined stacking fault (SF), and highly defective structure, in a periodic fashion along the NW length.
View Article and Find Full Text PDFThe effect of clamping on resonance frequency and thus measured Young's modulus of nanowires (NWs) is systematically investigated via a combined experimental and simulation approach. ZnO NWs are used in this work as an example. The resonance tests are performed in situ inside a scanning electron microscope and the NWs are cantilevered on a tungsten probe by electron-beam-induced deposition (EBID) of hydrocarbon.
View Article and Find Full Text PDFThis paper reports the first direct measurements of static friction force and interfacial shear strength between silicon (Si) nanowires (NWs) and poly(dimethylsiloxane) (PDMS). A micromanipulator is used to manipulate and deform the NWs under a high-magnification optical microscope in real time. The static friction force is measured based on "the most-bent state" of the NWs.
View Article and Find Full Text PDFThe Young's modulus and fracture strength of silicon nanowires with diameters between 15 and 60 nm and lengths between 1.5 and 4.3 mum were measured.
View Article and Find Full Text PDFThe friction and shear strength of nanowire (NW)-substrate interfaces critically influences the electrical/mechanical performance and life time of NW-based nanodevices. Yet, very few reports on this subject are available in the literature because of the experimental challenges involved and, more specifically no studies have been reported to investigate the configuration of individual NW tip in contact with a substrate. In this letter, using a new experimental method, we report the friction measurement between a NW tip and a substrate for the first time.
View Article and Find Full Text PDF