Publications by authors named "Qingqiu Huang"

Lung cancer has posed a significant challenge to global health, and related study has been a hot topic in oncology. This article focuses on metabolic reprogramming of lung cancer cells, a process to adapt to energy demands and biosynthetic needs, supporting the proliferation and development of tumor cells. In this study, the latest studies on lung cancer tumor metabolism were reviewed, including the impact of metabolic products and metabolic enzymes on the occurrence and development of lung cancer, as well as the progress in the field of lung cancer treatment targeting relevant metabolic pathways.

View Article and Find Full Text PDF

The solution viscosity and protein-protein interactions (PPIs) as a function of temperature (4-40 °C) were measured at a series of protein concentrations for a monoclonal antibody (mAb) with different formulation conditions, which include NaCl and sucrose. The flow activation energy () was extracted from the temperature dependence of solution viscosity using the Arrhenius equation. PPIs were quantified via the protein diffusion interaction parameter () measured by dynamic light scattering, together with the osmotic second virial coefficient and the structure factor obtained through small-angle X-ray scattering.

View Article and Find Full Text PDF

Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature versus.

View Article and Find Full Text PDF

Complex coacervation refers to the liquid-liquid phase separation (LLPS) process occurring between charged macromolecules. The study of complex coacervation is of great interest due to its implications in the formation of membraneless organelles (MLOs) in living cells. However, the impacts of the crowded intracellular environment on the behavior and interactions of biomolecules involved in MLO formation are not fully understood.

View Article and Find Full Text PDF

Understanding protein-protein interactions and formation of reversible oligomers (clusters) in concentrated monoclonal antibody (mAb) solutions is necessary for designing stable, low viscosity (η) concentrated formulations for processing and subcutaneous injection. Here we characterize the strength () of short-range anisotropic attractions (SRA) for 75-200 mg/mL mAb2 solutions at different pH and cosolute conditions by analyzing structure factors (()) from small-angle X-ray scattering (SAXS) using coarse-grained molecular dynamics simulations. Best fit simulations additionally provide cluster size distributions, fractal dimensions, cluster occluded volume, and mAb coordination numbers.

View Article and Find Full Text PDF

While solution micellization of ionic block copolymers (BCP) with randomly distributed ionization sites along the hydrophilic segments has been extensively studied, the roles of positionally controlled ionization sites along the BCP chains in their micellization and resulting micellar structure remain comparatively less understood. Herein, three amphoteric polypeptoid block copolymers carrying two oppositely charged ionizable sites, with one fixed at the hydrophobic terminus and the other varyingly positioned along the hydrophilic segment, have been synthesized by sequential ring-opening polymerization method. The presence of the ionizable site at the hydrophobic segment terminus is expected to promote polymer association toward equilibrium micellar structures in an aqueous solution.

View Article and Find Full Text PDF

Load-bearing soft tissues are soft but strong, strong yet tough. These properties can only be replicated in synthetic hydrogels, which do not have the biocomplexity required by many biomedical applications. By contrast, natural hydrogels, although retaining the native complexity, are weak and fragile.

View Article and Find Full Text PDF

Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature vs.

View Article and Find Full Text PDF

Transport of newly synthesized proteins from endoplasmic reticulum (ER) to Golgi is mediated by coat protein complex II (COPII). The assembly and disassembly of COPII vesicles is regulated by the molecular switch Sar1, which is a small GTPase and a component of COPII. Usually a small GTPase binds GDP (inactive form) or GTP (active form).

View Article and Find Full Text PDF

As continuing discoveries highlight the surprising abundance and resilience of deep ocean and subsurface microbial life, the effects of extreme hydrostatic pressure on biological structure and function have attracted renewed interest. Biological small-angle X-ray scattering (BioSAXS) is a widely used method of obtaining structural information from biomolecules in solution under a wide range of solution conditions. Due to its ability to reduce radiation damage, remove aggregates, and separate monodisperse components from complex mixtures, size-exclusion chromatography-coupled SAXS (SEC-SAXS) is now the dominant form of BioSAXS at many synchrotron beamlines.

View Article and Find Full Text PDF

The crystal structure of the complex of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.

View Article and Find Full Text PDF

Multi-injection pharmaceutical products such as insulin must be formulated to prevent aggregation and microbial contamination. Small-molecule preservatives and nonionic surfactants such as poloxamer 188 (P188) are thus often employed in protein drug formulations. However, mixtures of preservatives and surfactants can induce aggregation and even phase separation over time, despite the fact that all components are well dissolvable when used alone in aqueous solution.

View Article and Find Full Text PDF

Many industrial processes operate at elevated temperatures or within broad pH and salinity ranges. However, the utilization of enzymes to carry out biocatalysis in such processes is often impractical or even impossible. Laccases (EC 1.

View Article and Find Full Text PDF

Cancer cells frequently exhibit uncoupling of the glycolytic pathway from the TCA cycle (i.e., the "Warburg effect") and as a result, often become dependent on their ability to increase glutamine catabolism.

View Article and Find Full Text PDF

Serial synchrotron crystallography (SSX) is enabling the efficient use of small crystals for structure-function studies of biomolecules and for drug discovery. An integrated SSX system has been developed comprising ultralow background-scatter sample holders suitable for room and cryogenic temperature crystallographic data collection, a sample-loading station and a humid `gloveless' glovebox. The sample holders incorporate thin-film supports with a variety of designs optimized for different crystal-loading challenges.

View Article and Find Full Text PDF

Pressure is a fundamental thermodynamic parameter controlling the behavior of biological macromolecules. Pressure affects protein denaturation, kinetic parameters of enzymes, ligand binding, membrane permeability, ion trans-duction, expression of genetic information, viral infectivity, protein association and aggregation, and chemical processes. In many cases pressure alters the molecular shape.

View Article and Find Full Text PDF

Integrin activation controls cell adhesion, migration, invasion, and extracellular matrix remodeling. RIAM (RAP1-GTP-interacting adaptor molecule) is recruited by activated RAP1 to the plasma membrane (PM) to mediate integrin activation via an inside-out signaling pathway. This process requires the association of the pleckstrin homology (PH) domain of RIAM with the membrane PIP2.

View Article and Find Full Text PDF

Point mutations in cysteine string protein-α (CSPα) cause dominantly inherited adult-onset neuronal ceroid lipofuscinosis (ANCL), a rapidly progressing and lethal neurodegenerative disease with no treatment. ANCL mutations are proposed to trigger CSPα aggregation/oligomerization, but the mechanism of oligomer formation remains unclear. Here we use purified proteins, mouse primary neurons and patient-derived induced neurons to show that the normally palmitoylated cysteine string region of CSPα loses palmitoylation in ANCL mutants.

View Article and Find Full Text PDF

RAP1-interacting adapter molecule (RIAM) mediates RAP1-induced integrin activation. The RAS-association (RA) segment of the RA-PH module of RIAM interacts with GTP-bound RAP1 and phosphoinositol 4,5 bisphosphate but this interaction is inhibited by the N-terminal segment of RIAM. Here we report the structural basis for the autoinhibition of RIAM by an intramolecular interaction between the IN region (aa 27-93) and the RA-PH module.

View Article and Find Full Text PDF

The causative agent of Legionnaires' disease, , delivers more than 330 virulent effectors to its host to establish an intracellular membrane-bound organelle called the containing vacuole. Among the army of effectors, SidC and its paralog SdcA have been identified as novel bacterial ubiquitin (Ub) E3 ligases. To gain insight into the molecular mechanism of SidC/SdcA as Ub ligases, we determined the crystal structures of a binary complex of the N-terminal catalytic SNL domain of SdcA with its cognate E2 UbcH5C and a ternary complex consisting of the SNL domain of SidC with the Ub-linked E2 UbcH7.

View Article and Find Full Text PDF

Enzymes generally display strict stereospecificity and regioselectivity for their substrates. Here by using FAD-dependent human acetylpolyamine oxidase (APAO), human spermine (Spm) oxidase (SMOX) and yeast polyamine oxidase (Fms1), we demonstrate that these fundamental properties of the enzymes may be regulated using simple guide molecules, being either covalently attached to polyamines or used as a supplement to the substrate mixtures. APAO, which naturally metabolizes achiral -acetylated polyamines, displays aldehyde-controllable stereospecificity with chiral 1-methylated polyamines, like and 1-methylspermidine (1,8-diamino-5-azanonane) (1-MeSpd).

View Article and Find Full Text PDF

Altered glycolytic flux in cancer cells (the "Warburg effect") causes their proliferation to rely upon elevated glutamine metabolism ("glutamine addiction"). This requirement is met by the overexpression of glutaminase C (GAC), which catalyzes the first step in glutamine metabolism and therefore represents a potential therapeutic target. The small molecule CB-839 was reported to be more potent than other allosteric GAC inhibitors, including the parent compound bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl (BPTES), and is in clinical trials.

View Article and Find Full Text PDF

Glutamine-derived carbon becomes available for anabolic biosynthesis in cancer cells via the hydrolysis of glutamine to glutamate, as catalyzed by GAC, a splice variant of kidney-type glutaminase (GLS). Thus, there is significant interest in understanding the regulation of GAC activity, with the suggestion being that higher order oligomerization is required for its activation. We used x-ray crystallography, together with site-directed mutagenesis, to determine the minimal enzymatic unit capable of robust catalytic activity.

View Article and Find Full Text PDF

Talin plays an important role in regulating integrin-mediated signaling. Talin function is autoinhibited by intramolecular interactions between the integrin-binding F3 domain and the autoinhibitory domain (R9). We determined the crystal structure of a triple-domain fragment, R7R8R9, which contains R9 and the RIAM (Rap1-interacting adaptor molecule) binding domain (R8).

View Article and Find Full Text PDF

A novel set of GAC (kidney glutaminase isoform C) inhibitors able to inhibit the enzymatic activity of GAC and the growth of the triple negative MDA-MB-231 breast cancer cells with low nanomolar potency is described. Compounds in this series have a reduced number of rotatable bonds, improved ClogPs, microsomal stability and ligand efficiency when compared to the leading GAC inhibitors BPTES and CB-839. Property improvements were achieved by the replacement of the flexible n-diethylthio or the n-butyl moiety present in the leading inhibitors by heteroatom substituted heterocycloalkanes.

View Article and Find Full Text PDF