Fly ash from municipal solid waste incineration (MSWI) enriches many leachable toxic metals which readily migrate into the environment, posing serious risks to the ecosystem and human. In this study, the elements mobility, leaching availability as well as the potential maximum amounts of heavy metals in fly ash were thoroughly evaluated. To decontaminate the toxic elements from resulting fly ash leachates, The aqueous zinc (Zn) was recovered using Cyanex 572, cadmium (Cd) and copper (Cu) were effectively removed through adsorption process by a self-assembled hierarchical hydroxyapatite (HAP) nanostructure.
View Article and Find Full Text PDFThe exploration of emergency materials with ultra-fast adsorption rate and great adsorption capability of released U(VI) ions is essentially urgent. The present work successfully fabricated bundle-like hydroxyapatite (B-HAP) microstructures which composed of numerous nanorods by employing a facile and green method. The B-HAP was applied to treat the U(VI) containing wastewater.
View Article and Find Full Text PDFThe effluents from nuclear mining processes contain relatively high content of radionuclides (such as uranium), which may seriously threaten the environment and human health. Herein, a novel adsorbent, porous hydroxyapatite, was prepared and proven highly efficient for removal of uranyl ions (U(VI)) given its high U(VI) uptake capacity of 111.4 mg/g, fast adsorption kinetics, and the potential stabilization of adsorbed U(VI).
View Article and Find Full Text PDF