Publications by authors named "Qingping Meng"

Due to their exceptional catalytic properties for the oxygen reduction reaction (ORR) and other crucial electrochemical reactions, PtCo intermetallic nanoparticle (NP) and single atomic (SA) Pt metal site catalysts have received considerable attention. However, their formation mechanisms at the atomic level during high-temperature annealing processes remain elusive. Here, the thermally driven structure evolution of Pt-Co binary catalyst systems is investigated using advanced in situ electron microscopy, including PtCo intermetallic alloys and single Pt/Co metal sites.

View Article and Find Full Text PDF

Vanadium dioxide (VO), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO at local areas in planar VO/TiO device configuration under external biasing.

View Article and Find Full Text PDF

Recent advancement in aberration correction and detector technology opened a door to various applications using 4D-STEM, which yields a diffraction pattern for each scanning position within a crystal unit-cell in scanning transmission electron microscopy (STEM) and generates incredible amounts of data in momentum space. Currently 4D-STEM analysis relies on the center-of-mass of the diffraction patterns in electric field and charge density mapping. It only derives the total projected charge density and is limited to phase objects, e.

View Article and Find Full Text PDF

The interfacial electronic distribution in transition-metal oxide thin films is crucial to their interfacial physical or chemical behaviors. Core-loss electron energy-loss spectroscopy (EELS) may potentially give valuable information of local electronic density of state at high spatial resolution. Here, we studied the electronic properties at the interface of Pb(ZrTi)O (PZT)/4.

View Article and Find Full Text PDF

Spinel transition metal oxides (TMOs) have emerged as promising anode materials for lithium-ion batteries. It has been shown that reducing their particle size to nanoscale dimensions benefits overall electrochemical performance. Here, we use in situ transmission electron microscopy to probe the lithiation behavior of spinel ZnFeO as a function of particle size.

View Article and Find Full Text PDF

With recent rapid advancement in electron microscopy instrumentation, in particular, bright electron sources and monochromators, valence electron energy-loss spectroscopy (VEELS) has become attractive for retrieving band structures, optical properties, dielectric functions and phonon information of materials. However, Cherenkov radiation and surface-loss contribution significantly alter fine structures of VEELS, even in simple semiconductors and insulators. This leads to the problem that dielectric function or bandgap structure of these materials cannot be determined correctly if these effects are not removed.

View Article and Find Full Text PDF

The formation of hollow-structured oxide nanoparticles is primarily governed by the Kirkendall effect. However, the degree of complexity of the oxidation process multiplies in the bimetallic system because of the incorporation of more than one element. Spatially dependent oxidation kinetics controls the final morphology of the hollow nanoparticles, and the process is highly dependent on the elemental composition.

View Article and Find Full Text PDF

Background: Recently, most reports of Leucine-rich glioma-inactivated 1 (LGI1) antibody encephalitis are from Europe and the US, while the short term outcome and clinical characteristics of Chinese patients are rarely reported,we study the clinical manifestations, laboratory results and brain magnetic resonance images (MRI) of eight patients who were recently diagnosed with LGI1 antibody encephalitis in our hospital to improve the awareness and knowledge of this disease.

Methods: Eight patients (five males and three females; mean age, 63.4) with LGI1 antibody encephalitis who were diagnosed and treated in the Department of Neurology of Shengjing Hospital of China Medical University from September 2016 to June 2017 were recruited for the current study.

View Article and Find Full Text PDF

Polytypism, or stacking disorder, in crystals is an important structural aspect that can impact materials properties and hinder our understanding of the materials. One example of a polytypic system is todorokite-MnO, which has a unique structure among the transition-metal oxides, with large ionic conductive channels formed by the metal oxide framework that can be utilized for potential functionalization, from molecular/ion sieving to charge storage. In contrast to the perceived 3 × 3 tunneled structure, we reveal a coexistence of a diverse array of tunnel sizes in well-crystallized, chemically homogeneous one-dimensional todorokite-MnO.

View Article and Find Full Text PDF

The stress-free strain originated from local chemical composition and phase transformation can significantly alter the microstructures of materials; and then affect their properties. In this paper, we developed an analytical method to calculate stress-strain field due to the non-uniform stress-free strain in a spherically symmetrical particle. Applying the method to a lithium ion (Li-ion) battery electrode, the evolution of Li-ion concentration and strain field during the lithiation process is studied.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the first successful demonstration of electron transfer between single near-infrared emitting PbS/CdS nanocrystals and titanium dioxide (TiO).
  • It reveals that this electron transfer process affects the photoluminescence dynamics of the nanocrystals, showing distance dependence and a quasi two-state pattern in their blinking behavior.
  • The findings support the universality of quantum dot blinking across different nanocrystal types and emphasize that electron transfer with external acceptors influences their photoluminescence properties.
View Article and Find Full Text PDF

Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated.

View Article and Find Full Text PDF

Lithiation/delithiation induces significant stresses and strains into the electrodes for lithium ion batteries, which can severely degrade their cycling performance. Moreover, this electrochemically induced strain can interact with the local strain existing at solid-solid interfaces. It is not clear how this interaction affects the lithiation mechanism.

View Article and Find Full Text PDF

Despite the long history of dislocation-phonon interaction studies, there are many problems that have not been fully resolved during this development. These include an incompatibility between a perturbative approach and the long-range nature of a dislocation, the relation between static and dynamic scattering, and their capability of dealing with thermal transport phenomena for bulk material only. Here by utilizing a fully quantized dislocation field, which we called a "dislon", a phonon interacting with a dislocation is renormalized as a quasi-phonon, with shifted quasi-phonon energy, and accompanied by a finite quasi-phonon lifetime, which are reducible to classical results.

View Article and Find Full Text PDF

An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems.

View Article and Find Full Text PDF

Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates.

View Article and Find Full Text PDF

Spinel transition metal oxides are important electrode materials for lithium-ion batteries, whose lithiation undergoes a two-step reaction, whereby intercalation and conversion occur in a sequential manner. These two reactions are known to have distinct reaction dynamics, but it is unclear how their kinetics affects the overall electrochemical response. Here we explore the lithiation of nanosized magnetite by employing a strain-sensitive, bright-field scanning transmission electron microscopy approach.

View Article and Find Full Text PDF

Funding institutions and researchers increasingly expect that data will be shared to increase scientific integrity and provide other scientists with the opportunity to use the data with novel methods that may advance understanding in a particular field of study. In practice, sharing human subject data can be complicated because data must be de-identified prior to sharing. Moreover, integrating varied data types collected in a study can be challenging and time consuming.

View Article and Find Full Text PDF

We provide an analytical solution for studying the near-field optical effect of a core-shell nanostructure in proximity to a flat surface, within quasi-static approximation. The distribution of electrostatic potential and the field enhancement in this complex geometry are obtained by solving a set of linear equations. This analytical result can be applied to a wide range of systems associated with near-field optics and surface plasmon polaritons.

View Article and Find Full Text PDF

Objective: To evaluate the prognosis of very preterm infants with severe respiratory distress syndrome (RDS) receiving mechanical ventilation.

Methods: A total of 288 preterm infants mechanically ventilated for severe RDS and completed follow-up till 18 months of corrected age comprised these study subjects. The associations of prenatal and postnatal factors, mode and duration of conventional mechanical ventilation (CMV), medication and treatment, and complications with cerebral palsy or mental developmental index (MDI) < 70 at 18 months of age were analyzed.

View Article and Find Full Text PDF

A novel characterization technique using the combination of chemical sodiation and synchrotron based in situ X-ray diffraction (XRD) has been detailed illustrated. The power of this novel technique was demonstrated in elucidating the structure evolution of Li4Ti5O12 upon sodium insertion. The sodium insertion behavior into Li4Ti5O12 is strongly size dependent.

View Article and Find Full Text PDF

Photoinduced hole transfer is investigated in inorganic/organic hybrid nanocomposites of colloidal CdSe/ZnS quantum dots and a cationic conjugated polymer, poly(9,9'-bis(6-N,N,N-trimethylammoniumhexyl)fluorene-alt-phenylene, in solution and in solid thin film, and down to the single hybrid level and is assessed to be a dynamic quenching process. We demonstrate control of hole transfer rate in these quantum dot/conjugated polymer hybrids by using a series of core/shell quantum dots with varying shell thickness, for which a clear exponential dependency of the hole transfer rate vs shell thickness is observed, for both solution and thin-film situations. Furthermore, we observe an increase of hole-transfer rate from solution to film and correlate this with changes in quantum dot/polymer interfacial morphology affecting the hole transfer rate, namely, the donor-acceptor distance.

View Article and Find Full Text PDF