Introduction: Currently, the main treatment for advanced breast cancer is still chemotherapy. Immunological and chemical combination therapy has a coordinated therapeutic effect and achieves some efficacy. However, the immunosuppressive tumor microenvironment is a major cause for the failure of immunotherapy in breast cancer.
View Article and Find Full Text PDFResistance to apoptosis is a key mechanism underlying how cancer cells evade tumor therapy. Autophagy can prevent anticancer drug-induced apoptosis and promote tumor resistance. The purpose of this study was to improve the sensitivity and efficacy of chemotherapeutic drugs through the inhibition of autophagy.
View Article and Find Full Text PDFEarly diagnosis is primarily important for the therapeutic and prognostic outcomes of malignancies including prostate cancer (PCa). However, the visuality and veracity of ultrasound imaging for the diagnosis and prognostic prediction of PCa remains poor at present. In this study, we developed a new nanoultrasound contrast agent by modifying multi-walled carbon nanotubes (MWCNTs) with polyethylene glycol (PEG) and anti-PSMA aptamer.
View Article and Find Full Text PDFImmuno-based oncotherapy has been successfully implemented for cancer treatment. In the present study, we developed a Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs (CpG ODNs) nano-delivery system based on Multi-walled carbon nanotubes (MWCNTs) conjugated with H3R6 polypeptide (MHR-CpG) for prostate cancer immunotherapy. The in vitro and in vivo toxicity data revealed that the prepared MHR showed high biocompatibility.
View Article and Find Full Text PDFExosomes have emerged as a promising drug carrier with low immunogenicity, high biocompatibility and delivery efficiency. Here in, we isolated exosomes from A33-positive LIM1215 cells (A33-Exo) and loaded them with doxorubicin (Dox). Furthermore, we coated surface-carboxyl superparamagnetic iron oxide nanoparticles (US) with A33 antibodies (A33Ab-US), expecting that these A33 antibodies on the surface of the nanoparticles could bind to A33-positive exosomes and form a complex (A33Ab-US-Exo/Dox) to target A33-positive colon cancer cells.
View Article and Find Full Text PDFJ Control Release
November 2017
The lysosomal degradation pathway of autophagy has a crucial role in protecting cancer cells from multiple endogenous and exogenous stresses, particularly during the pathogenesis of cancer. Accordingly, agents that inhibit autophagy may have broad therapeutic applications. We have developed a novel strategy based on co-delivery of an autophagy related 7 (ATG7) siRNA and docetaxel (DTX) in a crosslinked, reducible, peptide-based micellar system for breast cancer treatment.
View Article and Find Full Text PDFIn the present study, we developed a novel type of reduction-sensitive nanoparticles (NPs) for docetaxel (DTX) delivery based on cross-linked lipoic acid NPs (LANPs). The physicochemical properties, cellular uptake and in vitro cytotoxicity of DTX loaded LANPs (DTX-LANPs) on A549 cells were investigated. Furthermore, the in vivo distribution and in vivo efficacy of DTX-LANPs was evaluated.
View Article and Find Full Text PDFCationic peptides as a non-viral gene vector have become a hotspot of research because of their high transfection efficcacy and safety. Based on our previous study, we synthesized a cationic reduction-responsive vector based on disulfide cross-linked L-arginine, L-histidine and lipoic acid (LHRss) as the co-carrier of both doxorubicin (DOX) and the necrosis factor-related apoptosis-inducing ligand (pTRAIL). The LHRss/DOX/TRAIL construct has reduction-sensitive behavior and an enhanced endosomal escape ability to increase the cytotoxicity of DOX and the transfection efficiency.
View Article and Find Full Text PDF