Photosensitization of extracellular polymeric substances (EPS) in aqueous environments is significant for pollutants degradation, but the synergistic effects in intimately coupled photocatalysis and biodegradation (ICPB) remain unknown. In this study, the pivotal role of EPS photosensitization in the degradation of 17β-estradiol 3-sulfate (E2-3S) was investigated in ICPB. Protein and polysaccharide contents in loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) increased by 16.
View Article and Find Full Text PDFThis study investigated the spatiotemporal distribution of 17 pharmaceuticals in wastewater treatment plants (WWTPs) from 17 provinces across China, and explored structural insights into their removal in full-scale wastewater treatment processes by quantum chemistry. Briefly, 10 pharmaceuticals were detected in above 85 % of samples, of which ibuprofen and sulfamethoxazole dominated with concentrations up to the μg/L level. Seasonally, concentrations of psychoactive drugs (PDs) were 1.
View Article and Find Full Text PDFVisible light-driven intimately coupled photocatalysis and biodegradation (VDICPB) is an efficient technology for removing recalcitrant contaminants, but the degradation pathway on 17β-estradiol 3-Sulfate (E2-3S) is still not clear. In this study, VDICPB based on N-doped TiO as a photocatalyst was established to investigate the removal and transformation of E2-3S in synthetic wastewater. VDICPB showed a satisfactory removal efficiency of 97.
View Article and Find Full Text PDFAs the key stage for purifying wastewater, elimination of emerging contaminants (ECs) is found to be fairly low in wastewater treatment plants (WWTPs). However, less knowledge is obtained regarding the transformation pathways between various chemical structures of ECs under different treatment processes. This study unveiled the transformation pathways of ECs with different structures in 15 WWTPs distributed across China by simplified network analysis (SNA) we proposed.
View Article and Find Full Text PDFUnderstanding the reaction mechanism of dissolved organic matter (DOM) during wastewater biotreatment is crucial for optimal DOM control. Here, we develop a directed paired mass distance (dPMD) method that constructs a molecular network displaying the reaction pathways of DOM. It couples direction inference and PMD analysis to extract the substrate-product relationships and delta masses of potentially paired reactants directly from sequential mass spectrometry data without formula assignment.
View Article and Find Full Text PDFThe application of deep learning (DL) models for screening environmental estrogens (EEs) for the sound management of chemicals has garnered significant attention. However, the currently available DL model for screening EEs lacks both a transparent decision-making process and effective applicability domain (AD) characterization, making the reliability of its prediction results uncertain and limiting its practical applications. To address this issue, a graph neural network (GNN) model was developed to screen EEs, achieving accuracy rates of 88.
View Article and Find Full Text PDFAdvanced oxidation processes based on radicals and/or non-radical catalysis are emerging as promising technologies for eliminating pharmaceuticals (PhACs) from wastewater. However, the respective contributions of different removal pathways (radicals or non-radical) for PhAC degradation still lacks quantitative investigation. Zero-valent iron and carbon nanotubes are frequently used to generate both radicals and non-radical species via the activation of persulfate (Fe/SWCNT/PDS).
View Article and Find Full Text PDFBiotransformation of emerging contaminants (ECs) is of importance in various natural and engineered systems to eliminate the adverse effects of ECs toward organisms. In wastewater, structurally similar ECs may transform through similar reactions triggered by common enzymes. However, the transformation pattern for them was scarcely studied.
View Article and Find Full Text PDFCitalopram (CIT) and sertraline (SER) are highly consumed antidepressants worldwide and have been extensively detected in wastewater. Due to the incomplete mineralization, transformation products (TPs) of them can be detected in wastewater. Comparing with parent compounds, knowledge on TPs are limited.
View Article and Find Full Text PDFRemoval of pharmaceuticals is essential in wastewater treatment systems due to their release and accumulation in the environment, which are raising issues for the environment and human health. A mathematical model could be used to predict pharmaceuticals removal under various operational parameters and assess the contributions of different removal pathways to pharmaceuticals removal. Here an ASM-PhACs model was established to describe pharmaceuticals removal including diclofenac (DCF), erythromycin (ERY), gemfibrozil (GEM) and carbamazepine (CBZ) removal in activated sludge system.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2023
Artificial sweeteners discharged into aquatic environments have raised concern because of their ubiquitous occurrence and potential biological effect. And some of them, such as sucralose (SUC) and acesulfame (ACE), have been identified as emerging contaminants. Wastewater treatment plants (WWTPs) are considered as important sources and sinks of artificial sweeteners discharged into the environment.
View Article and Find Full Text PDFProgesterone (P4) and norgestrel (NGT) are two steroid progestogens that can pose adverse effects on aquatic organisms at ng/L levels. Despite increasing concern on their occurrence and removal in wastewater, their fate in the wastewater treatment process has not been well documented. This study identified the transformation products (TPs) of P4 and NGT in anaerobic/anoxic/oxic (A/A/O) process.
View Article and Find Full Text PDFIn this study, the spatiotemporal variation in the occurrence of 19 endocrine-disrupting chemicals (EDCs) spanning four seasons in wastewater treatment plants (WWTPs) located in 17 Chinese cities was investigated. Removal efficiencies for selected EDCs in 17 WWTPs over four seasons were analyzed. Contributions of conventional and advanced process segments to the removal efficiency of EDCs were explored, which compared the removal efficacies of a variety of secondary and advanced processes for EDCs.
View Article and Find Full Text PDFDissolved organic matter (DOM) mediates the microbial transformation of micropollutants, including norgestrel (NGT) in natural waters. However, little is known of the effect of complex and variable wastewater-derived DOM composition on NGT degradation during wastewater treatment. In this study, the relationship between the compositions of initial DOM and NGT removal efficiencies of 17 wastewater treatment plants (WWTPs) in spring and summer were analyzed.
View Article and Find Full Text PDFThe characteristics of dissolved organic matter (DOM) can significantly affect the degradation of target compounds by the advanced oxidation processes. In this study, the effects of the different hydrophobicity/hydrophilicity fractions, molecular weight (MW) fractions, fluorescence components and molecular components of DOM extracted from municipal wastewater on the degradation of 4 pharmaceutically active compounds (PhACs), including carbamazepine, clofibric acid, atenolol and erythromycin by the UV/HO process were investigated. The results showed that the degradation rate constants of 4 PhACs decreased dramatically in the presence of DOM.
View Article and Find Full Text PDFThis study investigated the overall occurrence and spatiotemporal variation of 19 progestogens in 608 samples collected from 17 wastewater treatment plants (WWTPs) distributed across China during four seasons. The aqueous removal efficiencies of progestogens were calculated and the efficacies of process segments, secondary and advanced processes, and process units in the removal of progestogens were explored. The results indicated that progestogens were widely detected in investigating WWTPs, with the progesterone, dydrogesterone, dienogest, ethisterone, and norethindrone were always dominant in the influent, secondary effluent, final effluent, and excess sludge.
View Article and Find Full Text PDFRegeneration and reuse of draw solute (DS) is a key challenge in the application of forward osmosis (FO) technologies. Herein, EDTA-Na was studied as a recoverable DS for water extraction by taking advantages of its pH-responsive property. The FO system using EDTA DS achieved a higher water flux of 2.
View Article and Find Full Text PDFThe compositional characteristics of dissolved organic matter (DOM) in pharmaceutical wastewater effluent can affect the further improvement and application of the ozone treatment process. The present study investigated the changes of chemical structures, molecular weight (MW) distribution, hydrophobicity/hydrophilicity distribution, fluorescence properties and the molecular composition of DOM in pharmaceutical wastewater effluent during ozonation. Besides, the toxicity change of pharmaceutical wastewater effluent during ozonation was estimated.
View Article and Find Full Text PDFFluorescent dissolved organic matter (FDOM), having complex structures like aromatic structure and double bond structure, is able to represent relatively refractory parts of dissolved organic matter (DOM). This study investigated the distribution of FDOM in the influents and the removal in the secondary effluents of 15 municipal wastewater treatment plants (WWTPs) in 15 provincial capitals of China. Eight components have been identified using excitation emission matrix combined with parallel factor analysis (EEM-PARAFAC).
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
August 2019
Objective: To determine the expression profile of microRNA (miRNA) in peripheral blood mononuclear cells (PBMC) and immune factors in pregnant women with hepatitis B virus (HBV) infection.
Methods: A total of 182 pregnant women infected with HBV were randomly selected, with 40 healthy pregnant women and 35 non-pregnant women as controls. High-throughput sequencing was used to detect RNA in the PBMC of all subjects.
Public concerns about potential ecological risks of androgens discharged to the environment through wastewater treatment plants (WWTPs) has resulted in an increased interest regarding the occurrence and fate of androgens in WWTPs. In this study, the occurrence and removal of eight androgens from 12 municipal WWTPs distributed in eleven cities in China were investigated. The composition profiles of eight androgens in influent, effluent, and excess sludge were studied.
View Article and Find Full Text PDFProgestagens discharged from municipal wastewater treatment plants (WWTPs) have increasingly gained attention due to their potential risks to the aquatic organisms. However, limited information is available on the occurrence and removal of various progestagens in WWTPs in different cities of China. This work investigated the occurrence and removal of 11 progestagens in 21 WWTPs from 19 Chinese cities.
View Article and Find Full Text PDFSkeletal muscle atrophy is often caused by catabolic conditions including fasting, disuse, aging and chronic diseases, such as chronic obstructive pulmonary disease. Atrophy occurs when the protein degradation rate exceeds the rate of protein synthesis. Therefore, maintaining a balance between the synthesis and degradation of protein in muscle cells is a major way to prevent skeletal muscle atrophy.
View Article and Find Full Text PDFTumor invasion and metastasis are the critical steps in determining the aggressive phenotype of human cancers. Melittin, a major component of bee venom, has been reported to induce apoptosis in several cancer cells. However, the mechanisms of melittin involvement in cancer invasion and metastasis remain unclear.
View Article and Find Full Text PDFAppl Immunohistochem Mol Morphol
October 2015
Therapy strategy toward epidermal growth factor receptor (EGFR) inhibition in cervical cancer has been ongoing. EGFR promoter methylation status and EGFR tyrosine kinase inhibitor-sensitive mutations in cervical cancer may be significant for clinical outcome prediction using anti-EGFR treatment. In this study, EGFR tyrosine kinase inhibitor-sensitive mutations, EGFR exons 18, 19, and 21 mutations, were detected by sequencing in a total of 293 Chinese cervical squamous cell carcinoma tissue samples.
View Article and Find Full Text PDF