Lateral roots (LRs) receive signals from the inter-root environment and absorb water and nutrients from the soil. Auxin regulates LR formation, but the mechanism in tomato remains largely unknown. In this study, 'Ailsa Craig' tomato LRs appeared on the third day and were unevenly distributed in primary roots.
View Article and Find Full Text PDFHypocotyl elongation is dramatically influenced by environmental factors and phytohormones. Indole-3-acetic acid (IAA) plays a prominent role in hypocotyl elongation, whereas abscisic acid (ABA) is regarded as an inhibitor through repressing IAA synthesis and signalling. However, the regulatory role of ABA in local IAA deactivation remains largely uncharacterized.
View Article and Find Full Text PDFGrafting is widely used worldwide because of its obvious advantages, especially in solanaceous vegetable crops. However, the molecular mechanisms underlying graft formation are unknown. In this study, internode tissues from above and below the graft junction were harvested, and we performed weighted gene co-expression network analysis (WGCNA) to describe the temporal and spatial transcriptional dynamics that occur during graft formation in tomato.
View Article and Find Full Text PDFExogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants.
View Article and Find Full Text PDFHypocotyl elongation is a critical sign of seed germination and seedling growth, and it is regulated by multi-environmental factors. Light, temperature, and water potential are the major environmental stimuli, and their regulatory mechanism on hypocotyl growth has been extensively studied at molecular level. However, the converged point in signaling process of light, temperature, and water potential on modulating hypocotyl elongation is still unclear.
View Article and Find Full Text PDFEbb-and-flow subirrigation systems are highly efficient, water-saving and environmentally friendly. However, one concern with these recirculating systems is the possible transmission of plant pathogens. Here, through 16S rRNA-targeted Illumina sequencing, the bacterial dynamics in a recirculating nutrient solution were characterized for cucumber plug seedlings cultivated in an ebb-and-flow system in summer and winter.
View Article and Find Full Text PDFPlants harbor diverse bacterial communities, which play crucial roles in plant health and growth, in their rhizosphere, phyllosphere and endosphere. Tomato is an important model for studying plant-microbe interactions, but comparison of its associated bacterial community is still lacking. In this study, using Illumina sequencing of 16S rRNA amplicons, we characterized and compared the bacterial size and community from rootzone soil as well as the rhizosphere, phyllosphere and endosphere of roots, stems, leaves, fruits and seeds of tomato plants that were grown in greenhouse conditions.
View Article and Find Full Text PDFBackground: The ability of severed rootstocks and shoots to re-establish vascular connections is used to generate grafted plants that combine desirable traits from both scions and rootstocks. Clarifying the mechanisms of graft healing is essential for its further application. We performed RNA sequencing of internodes near the cut position, making a distinction between separated or grafted tissues above and below the cut, in order to obtain a genetic description of graft union formation.
View Article and Find Full Text PDFBacteriocins are peptides or proteins synthesized by bacterial ribosomes that show killing or inhibitory activities against different groups of bacteria. Bacteriocins are considered potential alternatives to traditional antibiotics, preservatives in pharmaceutical and food industries. A strain L-Q11 isolated from orchard soil was phylogenetically characterized as based on 16S rRNA gene sequencing analysis.
View Article and Find Full Text PDFHypocotyl elongation is an early event in plant growth and development and is sensitive to fluctuations in light, temperature, water potential and nutrients. Most research on hypocotyl elongation has focused on the regulatory mechanism of a single environment factor. However, information about combined effects of multi-environment factors remains unavailable, and overlapping sites of the environmental factors signaling pathways in the regulation of hypocotyl elongation remain unclear.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2019
P852, a novel cyclic peptide isolated from Bacillus amyloliquefaciens L-H15, showed potent antifungal activity against several major plant fungal pathogens including Fusarium oxysporum. To elucidate the antifungal mechanism, the impact of P852 on the cell morphology and membrane permeabilization of F. oxysporum was studied.
View Article and Find Full Text PDFBackground: Acquisition of external phosphorus (P) and optimisation of internal P are essential for plant growth and development, and insufficient availability of P in soils is a major challenge in agriculture. Members of the purple acid phosphatase (PAP) family of enzymes are candidates for increasing P use efficiency. Herein, we identified PAP homologs in the genomes of 10 vegetable species, along with Arabidopsis thaliana and Amborella trichopoda as references, to provide fundamental knowledge for this family.
View Article and Find Full Text PDFVegetable plug seedling has become the most important way to produce vegetable seedlings in China. This seedling method can significantly improve the quality and yield of vegetables compared to conventional methods. In the process of plug seedling, chemical fertilizers or pesticides are often used to improve the yield of the seedlings albeit with increasing concerns.
View Article and Find Full Text PDFSalicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.
View Article and Find Full Text PDFBacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L.
View Article and Find Full Text PDFFatty acid desaturases (FADs) introduce double bonds into the hydrocarbon chains of fatty acids to produce unsaturated fatty acids, and therefore play a critical role in plant development and acclimation to environmental stresses. In this study, 23 full-length FAD genes in cucumber (Cucumis sativus L.) were identified through database searches, including three CsFAB2 genes, two CsFAD2 genes, fourteen CsFAD5 genes, and one gene each for CsFAD3, CsFAD4, CsFAD6 and CsFAD7.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2015
To reveal the roles of phenylalanine ammonia-lyase (PAL) in low temperature tolerance in cucumber seedlings, a specific PAL inhibitor (AOPP) was sprayed to the seedlings, and then the stress tolerance was determined. The results suggested that both gene expression and enzymatic activity of PAL in cucumber leaves were induced under low temperature. The seedlings pretreated with AOPP showed lower PAL activity and less accumulation of phenolics and flavonoids.
View Article and Find Full Text PDFBacillus amyloliquefaciens L-S60, a gram-positive plant-associated bacterium, which could stimulate plant growth and shows strong antifungal function, was isolated from the turfy soil in Beijing, China. The genome of B. amyloliquefaciens L-S60 comprises a 3903,017bp long circular chromosome that consists of 3909 protein-coding genes and 117 RNA genes.
View Article and Find Full Text PDFBacillus amyloliquefaciens L-H15 with broad spectrum antifungal activity was used as a biocontrol agent to suppress Fusarium oxysporum and other soil-borne fungal plant pathogens. Two antifungal fractions were isolated by bioactivity-guided reversed-phase high-performance liquid chromatography. The two compounds were identified by tandem Q-TOF mass spectroscopy as C15 Iturin A (1) and a novel cyclic peptide with a molecular weight of 852.
View Article and Find Full Text PDFBacillus amyloliquefaciens L-H15 is a plant growth promoting rhizobacteria (PGPR) isolated from the cucumber seedling substrate collected in Beijing, China. The complete genome of B. amyloliquefaciens L-H15 consists of one single circular chromosome (3,864,316 bp) without any plasmid.
View Article and Find Full Text PDFSalicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings.
View Article and Find Full Text PDFBacillus amyloliquefaciens K103 isolated from a lemon sample was used as a biocontrol agent to suppress Rhizoctonia solani Kühn and other fungal plant pathogens. Two antifungal compounds were purified from the culture broth using acid precipitation, gel permeation chromatography, and reversed-phase high-performance liquid chromatography. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis indicated that the antifungal compounds were two isomers similar to bacillomycin L.
View Article and Find Full Text PDFBacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activities against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. Prior to this study, the role of membrane permeabilization in the antimicrobial activity of bacillomycin L against plant pathogenic fungi had not been investigated. To shed light on the mechanism of this antifungal activity, the permeabilization of R.
View Article and Find Full Text PDFPhenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon.
View Article and Find Full Text PDFTo approach the related mechanisms of exogenous salicylic acid (SA) in improving plant drought-resistance, this paper studied the effects of applying exogenous SA to the rhizosphere on the plant growth, membrane lipid peroxidation, proline accumulation, water use efficiency, net photosynthetic rate (Pn), and chlorophyll fluorescence parameters of cucumber (Cucumis sativus) seedlings under drought stresses (60% and 50% of saturated water capacity). Applying SA relieved the inhibitory effects of drought stress on plant growth, Pn, and water use efficiency, decreased membrane lipid peroxidation, and promoted proline accumulation. Meanwhile, the SA decreased the decrements of the maximum photochemical efficiency of PS II, actual photochemical efficiency of PS II, potential activity of PS II, effective photochemical efficiency of PS II, and photochemical quenching coefficient under drought stress significantly, and limited the increase of non-photochemical quenching coefficient.
View Article and Find Full Text PDF