Single-molecule localization super-resolution fluorescence imaging relies on the fluorescence ON/OFF switching of fluorescent probes to break the diffraction limit. However, the unreacted or nonspecifically bound probes cause non-targeted ON/OFF switching, resulting in substantial fluorescence background that significantly reduces localization precision and accuracy. Here, we report a blinkogenic probe HM-DS655-Halo that remains blinking OFF until it binds to HaloTag, thereby triggering its self-blinking activity and enabling its application in direct SMLM imaging in living cells without wash-out steps.
View Article and Find Full Text PDFSuper-resolution fluorescence imaging of live cells increasingly demands fluorescent probes capable of multi-color and long-term dynamic imaging. Understanding the mechanisms of probe-target recognition is essential for the engineered development of such probes. In this study, it is discovered that the molecular lipid solubility parameter, Clog P, determines the staining performance of fluorescent dyes on lipid droplets (LDs).
View Article and Find Full Text PDFThe aggregation of fusion in sarcoma (FUS) in the cytoplasm and nucleus is a pathological feature of Amyotrophic lateral sclerosis (ALS) and Frontotemporal Dementia (FTD). Genetic mutations, abnormal protein synthesis, environmental stress, and aging have all been implicated as causative factors in this process. Salt ions are essential to many physiological processes in the body, and the imbalance of them is an important environmental stress factor in cells.
View Article and Find Full Text PDFIn this study, super-resolution structured illumination microscope (SIM) was used to analyze molecular mechanism of endocytic acidification inhibitors in the SARS-CoV-2 pandemic, such as Chloroquine (CQ), Hydroxychloroquine (HCQ) and Bafilomycin A1 (BafA1). We fluorescently labeled the SARS-CoV-2 RBD and its receptor ACE2 protein with small molecule dyes. Utilizing SIM imaging, the real-time impact of inhibitors (BafA1, CQ, HCQ, Dynasore) on the RBD-ACE2 endocytotic process was dynamically tracked in living cells.
View Article and Find Full Text PDFSuper-resolution fluorescence imaging has emerged as a potent tool for investigating the nanoscale structure and function of the plasma membrane (PM). Nevertheless, the challenge persists in achieving super-resolution imaging of PM dynamics due to limitations in probe photostability and issues with cell internalization staining. Herein, we report assembly-mediated buffering fluorogenic probes and exhibiting fast PM labeling and extended retention time (over 2 h) on PM.
View Article and Find Full Text PDFSuper-resolution fluorescence imaging is a crucial method for visualizing the dynamics of the cell membrane involved in various physiological and pathological processes. This requires bright fluorescent dyes with excellent photostability and labeling stability to enable long-term imaging. In this context, we introduce a buffering-strategy-based cyanine dye, , designed to identify and label carbonic anhydrase IX (CA IX) located in the cell membrane.
View Article and Find Full Text PDFThe varied functions of lipid droplets, which encompass the regulation of lipid and energy homeostasis, as well as their association with the occurrence of various metabolic diseases, are intricately linked to their dynamic properties. Super-resolution imaging techniques have emerged to decipher physiological processes and molecular mechanisms on the nanoscale. However, achieving long-term dynamic super-resolution imaging faces challenges due to the need for fluorescent probes with high photostability.
View Article and Find Full Text PDFIn the realm of cell research, membraneless organelles have become a subject of increasing interest. However, their ever-changing and amorphous morphological characteristics have long presented a formidable challenge when it comes to studying their structure and function. In this paper, a fluorescent probe Nu-AN is reported, which exhibits the remarkable capability to selectively bind to and visualize the nucleolus morphology, the largest membraneless organelle within the nucleus.
View Article and Find Full Text PDFIn this study, we have uncovered that trifluoroethylamine-substituted solvatochromic fluorophores maintain consistently high and stable fluorescence intensity in diverse polar environments, including highly polar and protic solvents. The 1,8-naphthalimide derivatives serve as a buffering fluorogenic indicator for lipid droplet morphology during the fusion process and ratiometric probe for microenvironment polarity based on Halo-tag technology.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2023
Single-molecule localization microscopy (SMLM) has found extensive applications in various fields of biology and chemistry. As a vital component of SMLM, fluorophores play an essential role in obtaining super-resolution fluorescence images. Recent research on spontaneously blinking fluorophores has greatly simplified the experimental setups and extended the imaging duration of SMLM.
View Article and Find Full Text PDFImaging amyloid-beta (Aβ) aggregation is critical for understanding the pathology and aiding the pre-symptomatic intervention of Alzheimer's disease (AD). Amyloid aggregation consists of multiple phases with increasing viscosities and demands probes with broad dynamic ranges and gradient sensitivities for continuous monitoring. Yet, existing probes designed based on the twisted intramolecular charge transfer (TICT) mechanism mainly focused on donor engineering, limiting the sensitivities and/or dynamic ranges of these fluorophores to a narrow window.
View Article and Find Full Text PDFIt is urgent to understand the infection mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for the prevention and treatment of COVID-19. The infection of SARS-CoV-2 starts when the receptor-binding domain (RBD) of viral spike protein binds to angiotensin-converting enzyme 2 (ACE2) of the host cell, but the endocytosis details after this binding are not clear. Here, RBD and ACE2 were genetically coded and labeled with organic dyes to track RBD endocytosis in living cells.
View Article and Find Full Text PDFThe visualization of self-assembled structure and dynamics at the molecular level has become a powerful method to understand structure-function relationships of self-assembly. Herein, we in situ real-time imaged the dynamic process of benzyl-naphthalimide dyes at the nanoscale and inspected their internal structure with minimum 2.8 nm localization accuracy through single-molecule localization microscopy (SMLM) imaging.
View Article and Find Full Text PDFLong-wavelength fluorescent proteins (LWFPs) and LWFP-based sensors are indispensable tools for bioimaging and biosensing applications. However, it remains challenging to develop LWFPs with outstanding brightness and/or sensitivities, largely due to the lack of simple and effective molecular design strategies. Herein, we rationalized the molecular origins of a multi-donor strategy that affords significant bathochromic shifts and large Stokes shifts with minimal structural changes in the resulting protein fluorophores.
View Article and Find Full Text PDFLong-term super-resolution imaging appears to be increasingly important for unraveling organelle dynamics at the nanoscale, but is challenging due to the need for highly photostable and environment-sensitive fluorescent probes. Here, we report a self-blinking fluorophore that achieved 12 nm spatial resolution and 20 ms time resolution under acidic lysosomal conditions. This fluorophore was successfully applied in super-resolution imaging of lysosomal dynamics over 40 min.
View Article and Find Full Text PDFAlthough doping can induce room-temperature phosphorescence (RTP) in heavy-atom free organic systems, it is often challenging to match the host and guest components to achieve efficient intersystem crossing for activating RTP. In this work, we developed a simple descriptor ΔE to predict host molecules for matching the guest RTP emitters, based on the intersystem crossing via higher excited states (ISCHES) mechanism. This descriptor successfully predicted five commercially available host components to pair with naphthalimide (NA) and naphtho[2,3-c]furan-1,3-dione (2,3-NA) emitters with a high accuracy of 83 %.
View Article and Find Full Text PDFThe twisted intramolecular charge transfer (TICT) mechanism has guided the development of numerous bright and sensitive fluorophores. This review briefly overviews the history of establishing the TICT mechanism, and systematically summarizes the molecular design strategies in modulating the TICT tendency of various organic fluorophores towards different applications, along with key milestone studies and representative examples. Additionally, we also succinctly review the twisted intramolecular charge shuttle (TICS) and twists during photoinduced electron transfer (PET), and compare their similarities and differences with TICT, with emphasis on understanding the structure-property relationships between the twisted geometries and how they can directly affect the fluorescence of the molecules.
View Article and Find Full Text PDFFerroptosis, an iron-dependent nonapoptotic cell death, is a highly regulated tumor suppressing process. However, functions and mechanisms of RNA-binding proteins in regulation of evasion of ferroptosis during lung cancer progression are still largely unknown. Here, we report that the RNA-binding protein RBMS1 participates in lung cancer development via mediating ferroptosis evasion.
View Article and Find Full Text PDFAlthough super-resolution imaging offers an opportunity to visualize cellular structures and organelles at the nanoscale level, cellular heterogeneity and unpredictability still pose a significant challenge in the dynamic imaging of live cells. It is thus vital to develop better-performing and more photostable probes for long-term super-resolution imaging. Herein, we report a probe, LD-FG, for imaging lipid droplet (LD) dynamics using structured illumination microscopy (SIM).
View Article and Find Full Text PDFCell surface is the primary site for sensing extracellular stimuli. The knowledge of the transient changes on the surfaceome upon a perturbation is very important as the initial changed proteins could be driving molecules for some phenotype. In this study, we report a fast cell surface labeling strategy based on peroxidase-mediated oxidative tyrosine coupling strategy, enabling efficient and selective cell surface labeling within seconds.
View Article and Find Full Text PDFSuper-resolution fluorescence microscopy has emerged as a powerful tool for studying mitochondrial dynamics in living cells. However, the lack of photostable and chemstable probe makes long-term super-resolution imaging of mitochondria still a challenging work. Herein, we reported a 4-azetidinyl-naphthliamide derived SNAP-tag probe AN-BG exhibiting excellent fluorogenicity and photostability for long-term super-resolution imaging of mitochondrial dynamics.
View Article and Find Full Text PDFThe harm of pathogenic bacteria to humans has promoted extensive research on physiological processes of pathogens, such as the mechanism of bacterial infection, antibiotic mode of action, and bacterial antimicrobial resistance. Most of these processes can be better investigated by timely tracking of fluorophore-derived antibiotics in living cells. In this paper, we will review the recent development of fluorescent antibiotics featuring the conjugation with various fluorophores, and focus on their applications in fluorescent imaging and real-time detection for various physiological processes of bacteria in vivo.
View Article and Find Full Text PDFSi-rhodamine has been extensively used in super-resolution fluorescence imaging in recent years. Its equilibrium between ring-closed nonfluorescent spirolactones and ring-opened fluorescent zwitterions endows Si-rhodamine with excellent fluorogenicity, membrane permeability, and photostability. In this paper, the equilibrium of Si-rhodamine between lactones and zwitterions was revealed to be greatly affected by various environmental factors, including molecular aggregation, solvent polarity, pH, metal ions, irradiation, and temperature.
View Article and Find Full Text PDFHerein, we reported a simple, fast, and quantitative theoretical descriptor ΔG that allows accurate predictions of a wide range of spontaneously blinking rhodamines. ΔG denotes the Gibbs free energy differences between the closed and open forms of rhodamines and has a good linear relationship with experimental pK values. This correlation affords an effective guide for the quantitative designs of spontaneously blinking rhodamines and eliminates trial-and-error.
View Article and Find Full Text PDF