Hydrogel-based flexible strain sensors have been known for their excellent ability to convert different motions of humans into electrical signals, thus enabling real-time monitoring of various human health parameters. In this work, a composite hydrogel with hydrophobic association and hybrid cross-linking was fabricated by using polyacrylamide (PAm), surfactant sodium dodecyl sulfate (SDS), lauryl methacrylate (LMA), and polypyrrole (PPy). The dynamic dissociation-conjugation among LMA, SDS, and PPy could dissipate energy to improve the toughness of hydrogels.
View Article and Find Full Text PDFAs a classic flexible material, hydrogels show great potential in wearable electronic devices. The application of strain sensors prepared using them in human health monitoring and humanoid robotics is developing rapidly. However, it is still a challenge to fabricate a high-toughness, large-tensile-deformation, strain-sensitive.
View Article and Find Full Text PDFHuman observers are the ultimate receivers and evaluators of the image visual information and have powerful perception ability of visual quality with short-term global perception and long-term regional observation. Thus, it is natural to design an image quality assessment (IQA) computational model to act like an observer for accurately predicting the human perception of image quality. Inspired by this, here, we propose a novel observer-like network (OLN) to perform IQA by jointly considering the global glimpsing information and local scanning information.
View Article and Find Full Text PDF