Carbon fiber-reinforced polymer (CFRP) easily realizes the integrated manufacturing of components with high specific strength and stiffness, and it has become the preferred material in the aerospace field. Grinding is the key approach to realize precision parts and matching the positioning surface for assembly and precision. Hygroscopicity limits the application of flood lubrication in CFRP grinding, and dry grinding leads to large force, surface deterioration, and wheel clogging.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2021
Purpose: Virtual surgery system can provide us a realistic and immersive training environment, in which haptic force-feedback gives operators 'touching feeling.' Appropriate deformation models of soft and hard tissues are required for the achievement of real-time haptic feedback. To improve accuracy of modeling and haptic feedback simulation for maxillofacial virtual surgery, mechanical characteristics of soft and hard tissues should be explored.
View Article and Find Full Text PDFClin Implant Dent Relat Res
February 2020
Background: Bone drilling is a vital procedure in implant surgery and dental implant training systems based on virtual reality technology.
Purpose: Predict and update drilling force in real time based on a virtual dental implant training system and lay the foundation for realizing force feedback in dental implant training instruments.
Materials And Methods: An experimental platform was established to measure the drilling force for human mandibles from donors of different ages.
The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al₂O₃/TiAlN-coated tool were also tested as a comparison.
View Article and Find Full Text PDFThe purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation.
View Article and Find Full Text PDFDuctile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments.
View Article and Find Full Text PDF