Publications by authors named "Qingli Shi"

The purpose of this study was to provide an imaging reference for the measurement of disease progression, as well as to reveal the pathogenesis of leukoaraiosis (LA). Eighty-seven subjects were divided into three groups: LA patients with vascular dementia (LA-VaD) (20 subjects: 14 female, 6 male), LA patients with vascular cognitive impairment nondementia (LA-VCIND) (32 subjects: 14 male, 18 female), and normal controls (NC) (35 subjects: 14 male, 21 female). A multivariate Granger causality analysis (mGCA) was applied to the resting-state networks (RSNs) to evaluate the possible effective connectivity within the resting-state networks retrieved by independent component analysis (ICA) from resting-state functional magnetic resonance imaging (rs-fMRI) data.

View Article and Find Full Text PDF

Leukoaraiosis (LA) is associated with cognitive impairment in the older people which can be demonstrated in functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI). This study is to explore the FC changes in LA patients with different cognitive status by three network models. Fifty-three patients with LA were divided into three groups: the normal cognition (LA-NC; = 14, six males), mild cognitive impairment (LA-MCI; = 27, 13 males), and vascular dementia (LA-VD; = 12, six males), according to the Mini Mental State Exam (MMSE) and Clinical Dementia Rating (CDR).

View Article and Find Full Text PDF

The peak width of skeletonized mean diffusivity (PSMD) is a new, fully automated, robust imaging marker for cerebral small vessel disease (SVD), strongly associated with processing speed. However, it has never been applied to cerebral white matter lesions (WMLs). Our study aimed to investigate the correlation between PSMD and cognition, particularly in the executive function of patients with WMLs.

View Article and Find Full Text PDF

This paper is focused on the effects of radio frequency (RF) heating on the relative activity of polyphenol oxidase (PPO), weight loss, texture, color, and microstructure of potatoes. The results showed that pure mushroom PPO was almost completely inactivated at 80 °C by RF heating. The relative activity of potato PPO reduced to less than 10% with increasing temperature (25-85 °C).

View Article and Find Full Text PDF

Objectives: The aim of the study was to investigate the difference of resting-state default-mode network (DMN) between patients with leukoaraiosis (LA)-associated subcortical vascular cognitive impairment (SVCI) and control subjects, and to provide functional imaging evidence of SVCI.

Methods: All subjects (n = 58) were divided into two groups based on their clinical diagnosis: a LA-associated SVCI group (n = 31, 14 males) and a control group (n = 27, 14 males). Demographic information and resting-state functional MRI (rs-fMRI) data were obtained.

View Article and Find Full Text PDF

The aim of the present study was to examine the effects of the human chorionic gonadotropin (hCG) dose on the pulsatility indices (PI) of the intraovarian artery on the day of follicle aspiration and the oocyte quality, intrafollicular oxidative stress and luteinization. PI was also measured on the day of hCG administration. A total of 15 patients were undergoing the fertilization and embryo transfer (IVF-ET) program.

View Article and Find Full Text PDF

Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD.

View Article and Find Full Text PDF

These experiments reveal for the first time that microRNAs (miRNAs) mediate oxidant regulated expression of a mitochondrial tricarboxylic acid cycle gene (mdh2). mdh2 encoded malate dehydrogenase (MDH) is elevated by an unknown mechanism in brains of patients that died with Alzheimer's disease. Oxidative stress, an early and pervasive event in Alzheimer's disease, increased MDH activity and mRNA level of mdh2 by 19% and 22%, respectively, in a mouse hippocampal cell line (HT22).

View Article and Find Full Text PDF

Reduced brain metabolism is an invariant feature of Alzheimer Disease (AD) that is highly correlated to the decline in brain functions. Decreased activities of key tricarboxylic acid cycle (TCA) cycle enzymes may underlie this abnormality and are highly correlated to the clinical state of the patient. The activity of the α-ketoglutarate dehydrogenase complex (KGDHC), an arguably rate-limiting enzyme of the TCA cycle, declines with AD, but the mechanism of inactivation and whether it can be reversed remains unknown.

View Article and Find Full Text PDF

The activity of the α-ketoglutarate dehydrogenase complex (KGDHC), a mitochondrial enzyme complex that mediates the oxidative decarboxylation of α-ketoglutarate in the TCA cycle, is reduced in Alzheimer's disease. We investigated the metabolic effects of a partial KGDHC activity reduction on brain glucose metabolism using mice with disrupted expression of dihydrolipoyl succinyltransferase (DLST; gene encoding the E2k subunit of KGDHC). Brain tissue extracts from cortex and cerebellum of 6-week-old heterozygote DLST knockout mice (DLST+/-) and corresponding wild-type mice injected with [U-(13) C]glucose and decapitated 15 min later were analyzed.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is defined by senile plaques made of amyloid-beta peptide (Abeta), neurofibrillary tangles made of hyperphosphorylated tau proteins, and memory deficits. Thus, the events initiating the cascade leading to these end points may be more effective therapeutic targets than treating each facet individually. In the small percentage of cases of AD that are genetic (or animal models that reflect this form of AD), the factor initiating AD is clear (e.

View Article and Find Full Text PDF

The activity of a key mitochondrial tricarboxylic acid cycle enzyme, alpha-ketoglutarate dehydrogenase complex (KGDHC), declines in many neurodegenerative diseases. KGDHC consists of three subunits. The dihydrolipoyl succinyl transferase (DLST) component is unique to KGDHC.

View Article and Find Full Text PDF

Diminished energy metabolism and reduced activity of brain alpha-ketoglutarate dehydrogenase complex (KGDHC) occur in a number of neurodegenerative diseases. The relation between diminished KGDHC activity and altered energy metabolism is unknown. The present study tested whether a reduction in the KGDHC activity would alter cellular metabolism by comparing metabolism of [U-13C]glucose in a human embryonic kidney cell line (E2k100) to one in which the KGDHC activity was about 70% of control (E2k67).

View Article and Find Full Text PDF

Considerable data support the hypothesis that mitochondrial abnormalities link gene defects and/or environmental insults to the neurodegenerative process. The interaction of oxidants with calcium and the mitochondrial enzymes of the tricarboxylic acid cycle are central to that relationship. Abnormalities that were discovered in brains or fibroblasts from patients with Alzheimer's disease (AD) have been modeled in vitro and in vivo to assess their pathophysiological importance and to determine how they might be reversed.

View Article and Find Full Text PDF

Mitochondrial dysfunction, oxidative stress and reductions in thiamine-dependent enzymes have been implicated in multiple neurological disorders including Alzheimer's disease (AD). Experimental thiamine deficiency (TD) is an established model for reducing the activities of thiamine-dependent enzymes in brain. TD diminishes thiamine-dependent enzymes throughout the brain, but produces a time-dependent selective neuronal loss, glial activation, inflammation, abnormalities in oxidative metabolism and clusters of degenerating neurites in only specific thalamic regions.

View Article and Find Full Text PDF

Measures in autopsied brains from Alzheimer's Disease (AD) patients reveal a decrease in the activity of alpha-ketoglutarate dehydrogenase complex (KGDHC) and an increase in malate dehydrogenase (MDH) activity. The present experiments tested whether both changes could be caused by the common oxidant H(2)O(2) and to probe the mechanism underlying these changes. Since the response to H(2)O(2) is modified by the level of the E2k subunit of KGDHC, the interaction of MDH and KGDHC was studied in cells with varying levels of E2k.

View Article and Find Full Text PDF

Alzheimer disease (AD) is defined by progressive impairments in memory and cognition and by the presence of extracellular neuritic plaques and intracellular neurofibrillary tangles. However, oxidative stress and impaired mitochondrial function always accompany AD. Mitochondria are a major site of production of free radicals [ie, reactive oxygen species (ROS)] and primary targets of ROS.

View Article and Find Full Text PDF

Abnormalities in oxidative metabolism and reductions of thiamine-dependent enzymes accompany many age-related neurodegenerative diseases. Thiamine deficiency (TD) produces a cascade of events including mild impairment of oxidative metabolism, activation of microglia, astrocytes and endothelial cells that leads to neuronal loss in select brain regions. The earliest changes occur in a small, well-defined brain region, the submedial thalamic nucleus (SmTN).

View Article and Find Full Text PDF

The activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC) declines in brains of patients with several neurodegenerative diseases. KGDHC consists of multiple copies of E1k, E2k, and E3. E1k and E2k are unique to KGDHC and may have functions independent of the complex.

View Article and Find Full Text PDF

Comparison of the three-dimensional structure of the active sites of MuLV and HIV-1 reverse transcriptases shows the presence of a lysine residue (K152) in the substrate-binding region in MuLV RT, while its equivalent position in HIV-1 RT is occupied by a glycine (G112). To investigate the role of K152 in the mechanism of the polymerase reaction catalyzed by MuLV RT, four mutant RTs, namely, K152A, K152R, K152E, and K152G, were generated and biochemically characterized. All muteins exhibited reduced polymerase activity on both RNA and DNA template-primers with K152E being the most defective.

View Article and Find Full Text PDF

Recent evidence suggests that aberrant transglutaminase activity is associated with a wide variety of diseases. Tissue transglutaminase is the most widely distributed of the six well-characterized transglutaminases in humans. We describe a method for expressing hexahistidine-tagged human tissue transglutaminase in Escherichia coli BL21(DE3) using the pET-30 Ek/LIC expression vector.

View Article and Find Full Text PDF