Publications by authors named "Qinglei Zhang"

The combination of reversible angular dispersion-induced microbunching (ADM) and the rapid damping storage ring provides a storage-ring-based light source with the capability to produce longitudinal coherent radiation with a high repetition rate. This paper presents a prototype design for a test facility based on the study by Jiang et al. [Sci.

View Article and Find Full Text PDF

Steam turbine blades may crack, break, or suffer other failures due to high temperatures, high pressures, and high-speed rotation, which seriously threatens the safety and reliability of the equipment. The signal characteristics of different fault types are slightly different, making it difficult to accurately classify the faults of rotating blades directly through vibration signals. This method combines a one-dimensional convolutional neural network (1DCNN) and a channel attention mechanism (CAM).

View Article and Find Full Text PDF

Photodynamic therapy (PDT) eliminates cancer cells by converting endogenous oxygen into reactive oxygen species (ROS). However, its efficacy is significantly hindered by hypoxia in solid tumors. Hence, to engineer filamentous fd phage, a human-friendly bacteria-specific virus is proposed, into a nanozyme-nucleating photosensitizer-loaded tumor-homing nanofiber for enhanced production of ROS in a hypoxic tumor.

View Article and Find Full Text PDF

The increasing prevalence of bacterial multidrug antibiotic resistance has led to a serious threat to public health, emphasizing the urgent need for alternative antibacterial therapeutics. Lytic phages, a class of viruses that selectively infect and kill bacteria, offer promising potential as alternatives to antibiotics. However, injectable carriers with a desired release profile remain to be developed to deliver them to infection sites.

View Article and Find Full Text PDF

In flexible job shop scheduling problem (FJSP), the collision of bidirectional rail guided vehicles (RGVs) directly affects RGVs scheduling, and it is closely coupled with the allocation of production equipment, which directly affects the production efficiency. In this problem, taking minimizing the maximum completion time of RGVs and minimizing the maximum completion time of products as multi-objectives a dual-resource integrated scheduling model of production equipment and RGVs considering conflict-free routing problem (CFRP) is proposed. To solve the model, a multi-objective improved discrete grey wolf optimizer (MOID-GWO) is designed.

View Article and Find Full Text PDF

The crankshaft manufacturing process primarily comprises machining, single jacket, and double jacket stages. These stages collectively produce substantial carbon emissions, which significantly impact the environment. Low-carbon energy development and humanity's future are closely related.

View Article and Find Full Text PDF

In the realm of industrial robotics, there is a growing challenge in simplifying human-robot collaboration (HRC), particularly in complex settings. The demand for more intuitive teleoperation systems is on the rise. However, optimizing robot control interfaces and streamlining teleoperation remains a formidable task due to the need for operators to possess specialized knowledge and the limitations of traditional methods regarding operational space and time constraints.

View Article and Find Full Text PDF

In the intelligent manufacturing environment, modern industry is developing at a faster pace, and there is an urgent need for reasonable production scheduling to ensure an organized production order and a dependable production guarantee for enterprises. Additionally, production cooperation between enterprises and different branches of enterprises is increasingly common, and distributed manufacturing has become a prevalent production model. In light of these developments, this paper presents the research background and current state of distributed shop scheduling.

View Article and Find Full Text PDF

A fast photomultiplier photodetector with a broad/narrowband dual mode is implemented using a new 3D heterostructure based on embedded perovskite micro-sized single crystals. Because the single-crystal size is smaller than the electrode size, the active layer can be divided into a perovskite microcrystalline part for charge transport and a polymer-embedded part for charge storage. This induces an additional radial interface in the 3D heterojunction structure, and allows a photogenerated built-in electric field in the radial direction, especially when the energy levels between the perovskite and embedding polymer are similar.

View Article and Find Full Text PDF

Background: Obesity is primarily a consequence of food addiction. Drugs have been confirmed effective for weight loss more or less related to the functional connectivity in neural networks and metabolic patterns. Recent studies have shown that some anti-diabetic drugs, such as Metformin and Dapagliflozin have similar weight loss effects, however, their mechanisms are unclear.

View Article and Find Full Text PDF

Graphdiyne (GDY) is a promising material possessing extensive electronic tunability, high π conjugacy, and ordered porosity at a molecular level for the sp/sp-hybridized periodic structures. Despite these advantages, the preparation of soluble and crystalline graphdiyne is limited by the relatively compact stacking interactions, mostly existing in thick-layer and insoluble solids. Herein, we proposed a strategy of "framework charge-induced intercalation (FCII)" for the synthesis of a soluble (4.

View Article and Find Full Text PDF

This work investigated the effect of different valence states of phosphorus-containing compounds on thermal decomposition and flame retardancy of polyethylene terephthalate (PET). Three polyphosphates-PBPP with +3-valence P, PBDP with +5-valence P and PBPDP with both +3/+5-valence P-were synthesized. The combustion behaviors of flame-retardant PET were studied and the structure-property relationships between the phosphorus-based structures with different valence states and flame-retardant properties were further explored.

View Article and Find Full Text PDF

Deep learning has led to significant progress in the fault diagnosis of mechanical systems. These intelligent models often require large amounts of training data to ensure their generalization capabilities. However, the difficulty of obtaining turbine rotor fault data poses a new challenge for intelligent fault diagnosis.

View Article and Find Full Text PDF

To coordinate the trade-off between the separation and permeation of the nanofiltration membrane for the separation of Mg/Li, we regulated poly(ethyleneimine)/piperazine interface polymerization parameters to construct a positively/negatively charged ultrathin Janus nanofiltration membrane at a free aqueous-organic interface. At the optimized interfacial polymerization parameters, 0.03 wt % of piperazine reacted with trimethylbenzene chloride prior to poly(ethyleneimine), forming a primary polyamide layer with fewer defects or limiting large-scale defects of the polyamide layer.

View Article and Find Full Text PDF

-Oxide zwitterionic polyethyleneimine (ZPEI), a new kind of aqueous phase monomer synthesized by commercially branched polyethyleneimine (PEI) via oxidation reaction, was prepared for fabrication of thin-film composite (TFC) polyamide membranes via interfacial polymerization. The main factors, including the monomer concentration and immersion time of the aqueous phase and organic phase, were investigated. Compared with PEI-TFC membranes, the obtained optimal defect-free ZPEI-TFC membranes exhibited a lower roughness (3.

View Article and Find Full Text PDF

A phosphorous-based bi-functional compound HPDAl was used as a reactive-type flame retardant (FR) in an epoxy thermoset (EP) aiming to improve the flame retardant efficiency of phosphorus-based compounds. HPDAl, consisting of two different P-groups of aluminum phosphinate (AHP) and phosphophenanthrene (DOPO) with different phosphorous chemical environments and thus exerting different FR actions, exhibited an intramolecular P-P groups synergy and possessed superior flame-retardant efficiency compared with DOPO or AHP alone or the physical combination of DOPO/AHP in EP. Adding 2 wt.

View Article and Find Full Text PDF

Developing a general, facile, and direct strategy for synthesizing thin films of covalent organic frameworks (COFs) is a major challenge in this field. Herein, we report an unprecedented electrocleavage synthesis strategy to produce imine-linked COF films directly on electrodes from electrolyte solutions at room temperature. This strategy enables the cathodic exfoliation of the COF powders to nanosheets by electrochemical reduction and protonation, followed by nanosheets migrating to the anode and reproducing the COF structures by anodic oxidation.

View Article and Find Full Text PDF

A compact damping ring with a limited circumference of about 160 m is proposed for producing kilowatt-level coherent EUV radiation. The electron bunch in the storage ring is modulated by a 257 nm wavelength seed laser with the help of the angular-dispersion-induced micro-bunching method (Feng and Zhao in Sci Rep 7:4724, 2017), coherent radiation at 13.5 nm with an average power of about 2.

View Article and Find Full Text PDF

Developing proton-conducting membranes with three-dimensional conductivity and expedited interfacial contact is requested in the field of fuel cells. Here, we present a design strategy by combining solution processing and material flexibility into amorphous and porous polymers. We design a nanoporous polymer whose skeleton contains dihydrophenazine as a proton-accepting site, and subsequently protonate these sites to produce abundant charges on the polymer skeletons, which enables ionic polymers to be well dispersed in organic solvents and guarantees that they can be fabricated into uniform and amorphous membranes in a solution-processed manner.

View Article and Find Full Text PDF

Prostatic cancer (PCa) is a prevalent form of malignancy based on its high associated levels of mortality and morbidity across the world. MicroRNAs (miRNAs) are significant in the advancement of prostatic cancer. The current study is aimed at exploring the potential roles of miR-373 in PCa.

View Article and Find Full Text PDF

In organic photodetectors, photomultiplication is mainly originated from interfacial and/or bulk charge traps, which induces slow response due to the slow release of trapped charges and strongly limits the optimization of the overall performance. This study has exhibited a remarkable case that the gain (>1) and response speed of the lateral photodetectors are promoted simultaneously and effectively by increasing the trap ratio. For lateral photodetectors with silver nanoparticles and PDPPBTT:PCBM bulk heterojunction, the gain increases from 12.

View Article and Find Full Text PDF

Semi-built-up crankshafts are universally manufactured by shrink-fitting process with induction heating device. The configurations of induction coil have a great impact on the distributions of eddy current and temperature of crankthrows. Most induction devices are apt to cause some undesirable phenomena such as uneven temperature distribution and irregular deformation after induction heating.

View Article and Find Full Text PDF

Elliptical polarized undulators (EPUs) are broadly used in the soft X-ray energy range. They have the advantage of providing photons with both varied energy and polarization through adjustments to the value of the gap and/or shift magnet arrays in an undulator. Yet these adjustments may create a disturbance on the stability of the electron beam in a storage ring.

View Article and Find Full Text PDF

Jumonji domain‑containing protein 2A (JMJD2A) has been identified to promote cell proliferation in bladder cancer; however, it remains undetermined whether JMJD2A regulates cell migration and invasion in bladder cancer. The aim of the present study was to further investigate the roles of JMJD2A in bladder cancer. The expression levels of JMJD2A in bladder cancer tissues and cell lines were established by RT‑qPCR assays and western blot analysis.

View Article and Find Full Text PDF

In this work, we have designed and synthesized a dinitrobenzene-sulfonate tetrahydro[5]helicene (H-DNP) as an effective fluorescent probe for detection of hydrogen sulfide (HS). Upon the addition of HS, a significant fluorescence enhancement (75-fold) at 495 nm can be observed with a distinct color change from colorless to yellow. Additionally, H-DNP shows low background spectroscopic signal, large Stokes Shift up to ~140 nm, good sensitivity, rapid response time less than 2 min, low detection limit (48 nM) and high selectivity toward common bio-thiols (Cysteine, Homocysteine and Glutathione).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionukjctihfutu5n461e9k2442gut9dr1c5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once