Purpose: Uterine fibroids (UF) are the most frequent tumors in ladies and can pose an enormous threat to complications, such as miscarriage. The accuracy of prognosis may also be affected by way of doctor inexperience and fatigue, underscoring the want for automatic classification fashions that can analyze UF from a giant wide variety of images.
Methods: A hybrid model has been proposed that combines the MobileNetV2 community and deep convolutional generative adversarial networks (DCGAN) into useful resources for medical practitioners in figuring out UF and evaluating its characteristics.