Publications by authors named "Qinghui Ai"

Phosphatidylethanolamine (PE) is a ubiquitous bioactive lipid in cells, which participates in regulating many metabolic processes. Exogenous PE has been reported to play a positive regulatory role in macrophage inflammatory responses. However, the molecular mechanisms of PE in regulating macrophage inflammation are not completely understood.

View Article and Find Full Text PDF

A feeding study lasting 30 days was carried out to determine the effects of dietary Oryzanol (Ory) on the survival, growth, antioxidant capacity, peptic enzymes, as well as lipid metabolism of larvae (11.87 ± 0.59 mg) using four different Ory concentrations in microfeed formulations (0, 20, 40, and 80 mg/kg), all preserving isolipidic (18.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effect of dietary succinic acid (SA) on the growth and health of large yellow croaker larvae over a 30-day feeding experiment.
  • Results showed that a 0.02% SA diet significantly boosted the larvae's final body weight and growth rate, while also enhancing digestive enzyme activities and intestinal development.
  • Additionally, supplementation with 0.01%-0.02% SA improved the larvae's immune response, indicating that SA can be beneficial for aquaculture nutrition.
View Article and Find Full Text PDF

Excess dietary intake of saturated fatty acids (SFAs) induces glucose intolerance and metabolic disorders. In contrast, unsaturated fatty acids (UFAs) elicit beneficial effects on insulin sensitivity. However, it remains elusive how SFAs and UFAs signal differentially toward insulin signaling to influence glucose homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • A 30-day feeding trial assessed the impact of mannan oligosaccharide (MOS) on skin wound healing in juvenile turbot, using a control diet and a diet supplemented with 0.16% MOS.
  • Results showed that MOS significantly improved wound closure rates and affected gene expression related to inflammation and tissue repair, promoting re-epithelialization and collagen deposition.
  • Additionally, MOS altered the skin microbiota, reducing certain harmful bacteria and increasing beneficial ones, ultimately enhancing the healing process.
View Article and Find Full Text PDF

Fatty acid-binding protein 1 (FABP1) plays an important role in regulating fatty acid metabolism in liver, which is a potential therapeutic target for diseases such as non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered FABP1 induction in hepatocytes as a primary mediator of lipogenesis when exposed to fatty acids, especially saturated fatty acids (SFAs).

View Article and Find Full Text PDF

As a vital pathway for cellular energy production, mitochondrial fatty acid β-oxidation (FAO) is essential in regulating immune responses to bacterial pathogens and maintaining intracellular homeostasis in vertebrates. However, the specific role of FAO in antiviral innate immune response in macrophages remains insufficiently understood. In this study, virus infection simulated by poly(I:C) inhibited FAO, as indicated by the reduced expression of FAO-related genes and proteins in the head kidney of large yellow croaker, with similar results observed in poly(I:C)-stimulated macrophages.

View Article and Find Full Text PDF

A ten-week culture trial in juvenile large yellow croaker (Larimichthys crocea) (10.80 ± 0.10 g) was conducted to assess the impact of supplementing heat-killed Lactobacillus acidophilus (HLA) on growth performance, intestinal digestive enzyme activity, antioxidant capacity and inflammatory response.

View Article and Find Full Text PDF

Vitamin D3 (VD3) is a steroid hormone that plays pivotal roles in pathophysiology, and 1,25(OH)2D3 is the most active form of VD3. In the current study, the crucial role of VD3 in maintaining energy homeostasis under short-term fasting conditions was investigated. Our results confirmed that glucose-depriving pathways were inhibited while glucose-producing pathways were strengthened in zebrafish after fasting for 24 or 48 h.

View Article and Find Full Text PDF

Triglyceride (TAG) deposition in the liver is associated with metabolic disorders. In lower vertebrate, the propensity to accumulate hepatic TAG varies widely among fish species. Diacylglycerol acyltransferases (DGAT1 and DGAT2) are major enzymes for TAG synthesis.

View Article and Find Full Text PDF

Background: Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear.

Objectives: This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling.

View Article and Find Full Text PDF

An 8-week growth trial was performed to investigate the protective effects of methanotroph bacteria meal (MBM) produced from methane against soybean meal-induced enteritis (SBMIE) in juvenile turbot (Scophthalmus maximus L.). Five isonitrogenous and isolipidic diets were formulated: fishmeal-based diet (FM, the control group); FM with approximate 50% of fishmeal substituted by 399.

View Article and Find Full Text PDF
Article Synopsis
  • Fish health suffers in high temperatures, and this study explores how dietary lipids influence juvenile turbot's growth and physiology under heat stress.
  • Five lipid concentrations (6.81% to 17.08%) were tested, with 12.03% deemed optimal, leading to better growth and lipid balance in fish at high temperatures.
  • Results indicated that the optimal lipid diet improved antioxidant activity, reduced oxidative damage, and enhanced immunity by regulating various genes and pathways.
View Article and Find Full Text PDF

Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD or 800 IU/kg VD for 3 wk.

View Article and Find Full Text PDF

In farmed fish, diets rich in palm oil have been observed to promote abnormal lipid build-up in the liver, subsequently leading to physiological harm and disease onset. Emerging research suggests that integrating phospholipids into the feed could serve as a potent countermeasure against hepatic impairments induced by vegetable oil consumption. Phosphatidylcholine is the most abundant type among phospholipids.

View Article and Find Full Text PDF

Studies on marine fish showed that vegetable oils substituted for excessive fish oil increased interleukin-1β (IL-1β) production. However, whether the nucleotide-binding oligomerization domain, leucine-rich repeat-containing family, pyrin domain-containing-3 (NLRP3) inflammasome has a substantial role in fatty acid-induced IL-1β production in fish remains unclear. The associated specific mechanism is also unknown.

View Article and Find Full Text PDF

As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages.

View Article and Find Full Text PDF

Chromatin remodeling plays an important role in regulating gene transcription, in which chromatin remodeling complex is a crucial aspect. Brg1/Brm-associated factor 60c (BAF60c) subunit forms a bridge between chromatin remodeling complexes and transcription factors in mammals; hence, it has received extensive attention. However, the roles of BAF60c in fish remain largely unexplored.

View Article and Find Full Text PDF

Vitamin D (VD) is a steroid hormone that is widely known to play an important role in maintaining mineral homeostasis, and regulating various physiological functions. Our previous results demonstrated that the interruption of VD metabolism caused hyperglycemia in zebrafish. In the present study we further explored the mechanism that VD regulates glucose metabolism by maintaining intestinal homeostasis in zebrafish.

View Article and Find Full Text PDF

Low-density lipoprotein (LDL) is the main carrier of cholesterol transport in plasma, which participates in regulating lipid homeostasis. Studies in mammals have shown that high levels of LDL in plasma absorbed by macrophages trigger the formation of lipid-rich foam cells, leading to the development of atherosclerotic plaques. Although lipid-rich atherosclerosis-like lesions have been discovered in the aorta of several fish species, the physiological function of LDL in fish macrophages remains poorly understood.

View Article and Find Full Text PDF

Sterol regulatory element-binding protein 2 (SREBP2) is considered to be a major regulator to control cholesterol homoeostasis in mammals. However, the role of SREBP2 in teleost remains poorly understand. Here, we explored the molecular characterisation of SREBP2 and identified SREBP2 as a key modulator for 3-hydroxy-3-methylglutaryl-coenzyme A reductase and 7-dehydrocholesterol reductase, which were rate-limiting enzymes of cholesterol biosynthesis.

View Article and Find Full Text PDF

Oxidized low-density lipoprotein (OX-LDL)-induced inflammation and autophagy dysregulation are important events in the progression of atherosclerosis. Phosphatidylethanolamine (PE), a multifunctional phospholipid that is enriched in cells, has been proven to be directly involved in autophagy which is closely associated with inflammation. However, whether PE can influence OX-LDL-induced autophagy dysregulation and inflammation has not been reported.

View Article and Find Full Text PDF

Glycerol monolaurate (GML) is a potential candidate for regulating metabolic syndrome and inflammatory response. However, the role of GML in modulating intestinal health in fish has not been well determined. In this study, a 70-d feeding trial was conducted to evaluate the effect of GML on intestinal barrier, antioxidant capacity, inflammatory response and microbiota community of large yellow croaker (13.

View Article and Find Full Text PDF
Article Synopsis
  • Adipose tissue, which stores fat, is important in fish and can accumulate a lot of fat in fish farming.
  • This study found a new type of fat tissue called perirenal adipose tissue in large yellow croaker fish using special imaging technology.
  • The research looked at how this fat tissue is different, how fat cells develop, and which genes are involved in this process, helping us understand how fish store fat better.
View Article and Find Full Text PDF