Publications by authors named "Qinghao Qin"

Smart responsive materials can react to external stimuli via a reversible mechanism and can be directly combined with a triboelectric nanogenerator (TENG) to deliver various intelligent applications, such as sensors, actuators, robots, artificial muscles, and controlled drug delivery. Not only that, mechanical energy in the reversible response of innovative materials can be scavenged and transformed into decipherable electrical signals. Because of the high dependence of amplitude and frequency on environmental stimuli, self-powered intelligent systems may be thus built and present an immediate response to stress, electrical current, temperature, magnetic field, or even chemical compounds.

View Article and Find Full Text PDF

Triboelectric nanogenerators have attracted extensive attention in energy harvesting due to its light weight, low cost, high flexibility, and diversity of function. However, deterioration in terms of mechanical durability and electrical stability of the triboelectric interface during operation, which are the results of material abrasion, severely limits their practical applications. In this paper, a durable triboelectric nanogenerator inspired by a ball mill was designed by using metal balls in hollow drums as carriers for charge generation and transfer.

View Article and Find Full Text PDF

Smart sensors are expected to be sustainable, stretchable, biocomfortable, and tactile over time, either in terms of mechanical performance, reconfigurability, or energy supply. Here, a biocompatible piezoelectric electronic skin (PENG) is demonstrated on the base of PZT-SEBS (lead zirconate titanate and styrene ethylene butylene styrene) composite elastomer. The highly elastic (with an elasticity of about 950%) PENG can not only harvest mechanical energy from ambient environment, but also show low toxicity and excellent sensing performance toward multiple external stimuli.

View Article and Find Full Text PDF