Introduction: The prevention of postoperative abdominal adhesions is one of the top concerns of surgeons after abdominal surgery. Therefore, identifying effective interventions to reduce postoperative abdominal adhesions are essential.
Methods: Fifty male Bagg's albino/c mice were randomly divided into five groups, and all groups underwent postoperative adhesion model surgery, except for the sham group.
Distributed acoustic sensing systems can obtain the road vibration information caused by vehicle driving vibration on highways. By characterizing the vehicle driving vibration data, a distributed acoustic sensing system based highway vehicle driving vibration detection scheme is proposed. Firstly, the out-of-bag error criterion of random forest is used to select multiple features of the vibration signals to obtain the most suitable feature quantity to characterize the road vibration signals, then the root mean square value of the signal matched filtering is calculated and compared, and the threshold is used to distinguish between the vehicle vibration signals and the noise.
View Article and Find Full Text PDFThe kernel serves as the storage organ and harvestable component of maize, and it plays a crucial role in determining crop yield and quality. Understanding the molecular and genetic mechanisms of kernel development is of considerable importance for maize production. In this study, we obtained a mutant, which we designated defective kernel 407 (), through ethyl methanesulfonate mutagenesis.
View Article and Find Full Text PDFIron (Fe) deficiency remains widespread among people in developing countries. To help solve this problem, breeders have been attempting to develop maize cultivars with high yields and high Fe concentrations in the kernels. We conducted a genome-wide association study and identified a gene, (), that regulates Fe concentrations in maize kernels.
View Article and Find Full Text PDFMaize rough dwarf disease (MRDD), caused by maize rough dwarf virus (MRDV) or rice black-streaked dwarf virus (RBSDV), seriously threatens worldwide production of all major cereal crops, including maize, rice, wheat and barley. Here we report fine mapping and cloning of a previously reported major quantitative trait locus (QTL) (qMrdd2) for RBSDV resistance in maize. Subsequently, we show that qMrdd2 encodes a G2-like transcription factor named ZmGLK36 that promotes resistance to RBSDV by enhancing jasmonic acid (JA) biosynthesis and JA-mediated defence response.
View Article and Find Full Text PDFThe open reading regions of ZmPHT1s (inorganic phosphate [Pi] transporters) in maize possess target sites of microRNA399 (miR399). However, the relationship between miR399 and ZmPHT1s and its functional importance in response to Pi deficiency remain to be explored. We show here that ZmPHT1;1, ZmPHT1;3, and ZmPHT1;13 are the targets of ZmmiRNA399.
View Article and Find Full Text PDFAlthough microRNA408 (miR408) is a highly conserved miRNA, the miR408 response to salt stress differs among plant species. Here, we show that miR408 transcripts are strongly repressed by salt stress and methyl viologen treatment in maize (Zea mays). Application of N, N1-dimethylthiourea partly relieved the NaCl-induced down-regulation of miR408.
View Article and Find Full Text PDFAlthough nitrogen (N) is known to affect mineral element homeostasis in plants, the molecular mechanisms of interactions between N and other nutrients remain largely unclear. We report here that N supply affects ion homeostasis in maize. Berberine hemisulfate staining and a propidium iodide penetration assay showed that N luxury significantly delayed Casparian strip (CS) formation in maize roots.
View Article and Find Full Text PDFAlthough the interaction between P and Zn has long been recognized in plants, the physiological and molecular mechanisms underlying P and Zn interactions are poorly understood. We show here that P supply decreases the Zn concentration in maize shoots and roots. Compared to +P + Zn (addition of both P and Zn), +P-Zn reduced and -P-Zn increased the total length of 1° lateral roots (LRs).
View Article and Find Full Text PDFA multi-parameter optical refractometric sensor based on lab-in-a-fiber is proposed and its sensing properties have been investigated. Based on the particular three suspended-core fiber, the sensor has three channels for liquid circulation and three suspended cores for detection. The multiple disease markers can be detected by coating the specific bio-recognition layer on the surface of three channels.
View Article and Find Full Text PDFConventional polarization converters selectively preserve the required polarization state by absorbing, reflecting or refracting light with unwanted polarization state, leading to a theoretical transmittance limit of 0.5 for linearly polarized light with unpolarized light incidence. In the meanwhile, due to the high-dimensional structure parameters and time-consuming numerical simulations, designing a converter with satisfactory performance is extremely difficult and closely relies on human experts' experiences and manual intervention.
View Article and Find Full Text PDFRecent findings have revealed the important roles of microRNAs (miRNAs) in the secondary responses to oxidative damage caused by iron (Fe) excess. However, the functional importance of miRNAs in plant responses to Fe deficiency remains to be explored. Here, we show that the expression level of miR164 in Arabidopsis (Arabidopsis thaliana) roots was repressed by Fe deficiency.
View Article and Find Full Text PDFMaize is one of the most broadly cultivated crops throughout the world, and flowering time is a major adaptive trait for its diffusion. The biggest challenge in understanding maize flowering genetic architecture is that the trait is confounded with population structure. To eliminate the effect, we revisited the flower time genetic network by using a tropical maize population Pop32, which was under mass selection for adaptation to early flowering time in China for six generations from tropical to temperate regions.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2021
Optical design plays an important role in improving the performance of opto-electronic devices. However, conventional design processes using finite difference time domain (FDTD) or finite element methods are usually time and computing resource consuming, and often result in sub-optimal solutions due to an incomplete search of the parameter state space. In this paper, we propose a deep learning approach to predict and optimize the cell performance of perovskite/crystalline-silicon (c-Si) tandem solar cells.
View Article and Find Full Text PDFThe roles of C-terminal Eps15 homology domain (EHD) proteins in clathrin-mediated endocytosis in plants are poorly understood. Here, we isolated a maize () mutant, designated , which showed defects in kernel development and vegetative growth. Positional cloning and transgenic analysis revealed that encodes an EHD protein.
View Article and Find Full Text PDFRibosome biogenesis is a fundamental process in all eukaryotic cells and is coupled with the processing and maturation of pre-rRNAs. Maize is a primary staple crop across the world, but little is known about the exact pre-rRNA processing sites and pathways in this species. In this study, we present a detailed model of the pathway by identifying the critical endonucleolytic cleavage sites and determining the pre-rRNA intermediates by circular reverse-transcription PCR and northern blot analysis.
View Article and Find Full Text PDFThe regulation of adaptive responses to phosphorus (P) deficiency by the ()/ () pathway has been well studied in Arabidopsis () but not in maize (). Here, we show that miR399 transcripts are strongly induced in maize by phosphate (Pi) deficiency. Transgenic maize plants that overexpressed accumulated excessive amounts of P in their shoots and displayed typical Pi-toxicity phenotypes.
View Article and Find Full Text PDFLodging under nitrogen (N)-luxury conditions substantially reduces crop yield and seed quality. However, the molecular mechanisms of plant lodging resistance remain largely unclear, especially in maize. We report here that the expression of ZmmiR528, a monocot-specific microRNA, is induced by N luxury but reduced by N deficiency.
View Article and Find Full Text PDFRibosome biogenesis is a fundamental process in eukaryotic cells. Although Urb2 protein has been implicated in ribosome biogenesis in yeast, the Urb2 domain is loosely conserved between plants and yeast, and the function of Urb2 protein in plants remains unknown. Here, we isolated a maize mutant, designated as urb2, with defects in kernel development and vegetative growth.
View Article and Find Full Text PDFIntermediate band solar cells (IBSCs) are conceptual and promising for next generation high efficiency photovoltaic devices, whereas, IB impact on the cell performance is still marginal due to the weak absorption of IB states. Here a rational design of a hybrid structure composed of ZnTe:O/ZnO core-shell nanowires (NWs) with Al bowtie nanoantennas is demonstrated to exhibit strong ability in tuning and enhancing broadband light response. The optimized nanowire dimensions enable absorption enhancement by engineering leaky-mode dielectric resonances.
View Article and Find Full Text PDFMicroRNAs regulate gene expression at the mRNA and translational levels. Although our previous research showed that expression of miR169 and one of its targets, NFYA5, is down- and up-regulated by drought stress, respectively, the current study shows that expression of both miR169 and NFYA5 are induced by dehydration shock. Unlike overexpression of MIR169a/b, overexpression of MIR169i/l did not decrease NFYA5 transcripts but increased NFYA5 protein levels.
View Article and Find Full Text PDFGastric carcinoma is one of the most common human cancers and has a poor prognosis. Receptor tyrosine kinase-like orphan receptor 2 (ROR2), which is a non-canonical receptor of the Wnt signaling pathway, has been reported to be deregulated in numerous types of human cancers, including gastric carcinoma. However, the exact role of ROR2 in the regulation of the malignant phenotypes of gastric carcinoma, as well as the underlying molecular mechanism, remains largely unclear.
View Article and Find Full Text PDFRecent studies on nitrate transporters (NRTs) have greatly increased our knowledge of the mechanisms regulating nitrogen (N) homeostasis in plants. However, an understanding of how these NRTs are regulated is still lacking. The nitrogen limitation adaptation (nla) mutant is hypersensitive to N limitation.
View Article and Find Full Text PDF